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• Surveillance at specific ranges

• Tracking with variable update rates

• 3-D target data measurements

• Manage many track simultaneously

• Ability to operate in clutter and

jamming environments

Modern Multichannel Array Radar Systems
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Adaptive detection architecture Accurate target localization
(estimation)

DESIRED: simultaneous target detection and 
             accurate angular estimation

Target parameter estimation only after target 
presence declaration!

Detection and estimation: two different signal processing tasks

Single-Pulse Simultaneous Target Detection and Angle Estimation [1/5]
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Multichannel planar phased array radar system

target backscattering 
and channel propagation 

effects
spatial steering 

vector                

Planar array geometry

Gaussian 
random noise 

unknown displacements

Linearize the array manifold 
around the pointing 

direction (	 )

Array steering direction 
not usually aligned with 

target DOA

target DOA

Single-Pulse Simultaneous Target Detection and Angle Estimation [2/5]

received data:
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Linearize d target 
steering vector

Single-Pulse Simultaneous Target Detection and Angle Estimation [3/5]

Target 
detection problem

Generalized 
Likelihood Ratio  

box constrained 
fractional quadratic 

optimization problem  

Solution

Constraints
Δ" ≤ 	α
Δ& ≤ '

6

Detect the target while simultaneously estimate its DOA



Single-Pulse Simultaneous Target Detection and Angle Estimation [4/5]

Dinkelbach’s  Optimization Algorithm

=>  GLRT for Linearized Array Manifold 
with Dinkelbach Optimization

Coordinate Descent Algorithm

=>  GLRT for Linearized Array Manifold with 
Coordinate Descent Optimization

At each iteration

At each iteration
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Single-Pulse Simultaneous Target Detection and Angle Estimation [5/5]

2.3. Performance Analysis 31
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Figure 2.6. Estimation performance for a URA with 5 ⇥ 5 antennas in
Scenario 2 for different sample support sizes, i.e., K = [30, 50, 70,1] and
several target locations, i.e., (a) (�u,�v) = (0, 0), (b) (�u,�v) = (0, 0.05),
(c) (�u,�v) = (0.05, 0.05), and (d) (�u,�v) = (0.5, 0.5). Therein ↵ = � =

0.2. In Fig. (b) are also reported two box-and-whisker plots at 13 dB and 20
dB, respectively.

interfering setup of Scenario 1 is analyzed. Figs. 2.4(a), 2.4(b), 2.4(c), and
2.4(d) refer to �u = 0, �u = 0.05, �u = 0.1, and �u = 0.5, respectively.
As expected, the MSE curves decrease with the SINR and the higher K

the lower the estimation error (in the mean square sense), being better and
better the accuracy of interference covariance matrix estimate.

The results clearly show the effectiveness of the proposed estimator.
Indeed, in the high SINR regime, the performance becomes closer to the
CRLB benchmark as K increases; of course, this happens when the actual

URA with 5x5 antennas,	( = ' = 0.2, (Δ", Δ&) 	= 0.05, 0.05  
1 narrow-band jammer at	(0.1, 0.1), with JNR = 30 dB and 1 wide-band jammer (2! 	= 	0.3) at (0.3, 0.3) with JNR2 = 40 dB

32
Chapter 2. Single-Pulse Simultaneous Target Detection and Angle Estimation in a

Multichannel Phased Array Radar
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Figure 2.7. Detection performance for the actual array manifold assuming
the interfering environment of Scenario 3. Figs. (a) and (b) report detec-
tion performance for a symmetric ULA with 9 antennas with K = 18, target
location uniformly distributed over [��,�], and ↵ = �: (a) � = 0.0523

and (b) � = 0.891/N . Figs. (c) and (d) correspond to a symmetric URA
with 5 ⇥ 5 antennas, with K = 75, target location offset �u and �v mod-
eled as a pair of statistically independent uniformly distributed random vari-
ables over [��1,�1] and [��2,�2], respectively, and ↵ = �1, � = �2: (c)
�1 = �2 = 0.1 and (d) �1 = �2 = 0.891/5 = 0.1782.

target displacement belongs to the assumed uncertainty region. Other-
wise, see Fig. 2.4(d), the MSE curves reach an error-floor of (0.5� 0.2)

2
=

�10.4576 dB. In this last situation, the devised technique reaches the fea-
sible value closest to the actual target displacement, further corroborating
the estimation capabilities of the devised strategy. At low SINR, smaller
values than the CRLB benchmark are observed indicating that the pro-

Detection Performance Estimation Performance

• Close to benchmark 
performance

• Outperforming 
counterparts

Performance 
approaches the 
CRLB 
benchmark 
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Structured Covariance Matrix Estimation 
with Missing-Data via EM



Structured Covariance Matrix Estimation with Missing-Data via EM [1/5]

10

missing data

4"4#4$4% •  •  •

$5

! spatial 
channels

•  •  •

"-th complete 
data snapshot

"-th observed 
data snapshot

#!×	!
selection 
matrix

homogeneous environment

MOTIVATION



Structured Covariance Matrix Estimation with Missing-Data via EM [2/5]
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The constrained maximum likelihood (ML) estimate of the covariance matrix can be
formulated as

PROBLEM FORMULATION

with
ℒ6 &(') ∣ ), $7, … , $8 the observed data log-likelihood
, the covariance matrix uncertainty set
) = {/7, … , /9} the observed data set
' ∈ ℝ: the vector of the unknown parameters defining the underlining structure of &.

"̂($̂) = argmax
;(<)∈>

	ℒ6 "($) ∣ /, 17, … , 18



Structured Covariance Matrix Estimation with Missing-Data via EM [3/5]

12

E-STEP

M-STEP

ℎ = 	ℎ	 + 1

Repeat until convergence

Solutions to the M-step devised in closed-form
under the assumption of ! belonging to a specific
covariance matrix uncertainty set.

EXPECTATION MAXIMIZATION-BASED ESTIMATION PROCEDURE



Structured Covariance Matrix Estimation with Missing-Data via EM [4/5]
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Data collected in an anechoic chamber using:

q four-channels SDR coherent receiver
q SDR transmitters to emulate the presence of

unknown emitters
q a Personal Computer to perform digital signal

processing operations;
q a Uniform Linear Array composed of four dipole

antennas separated by &/2

Missing data scenario emulated assuming probability
of missing an observation #" = 0.3

EXPERIMENTAL ANALYSIS



Structured Covariance Matrix Estimation with Missing-Data via EM [5/5]

Adaptive Beamforming Detection of sources number

14

MUSIC Spatial Spectrum on a dataset 
of 250 samples.

SINR (estimated using A = 500 disjoint blocks, each 
composed of 40 snapshots) versus the number of snapshots.

• Close-to-benchmark 
performance



Adaptive Radar Detection in the Presence of Missing-Data [1/3]

15

TARGET DETECTION PROBLEM FORMULATION

74 Chapter 4. Adaptive Radar Detection in the Presence of Missing-Data

mization of appropriate observed-data likelihood functions under the two
hypotheses. Hence, in Section 4.2, an EM-based framework is also de-
vised to tackle the resulting optimization problems and derive practical
detectors. The performance of the mentioned detectors is analyzed in Sec-
tion 4.3, whereas conclusions are drawn in Section 4.4.

4.1 Problem Formulation

Let us consider a radar system collecting spatial data via a linear ar-
ray composed of N antennas and operating in the presence of noise and
interference, with unknown spectral characteristics.

Under the ideal conditions of complete access to the set of space-time
observations, the problem of detecting a prospective target located at range
R and elevation ✓0 with respect to the array boresight (under the narrow-
band radar probing signal assumption), can be formulated as the following
composite binary hypothesis testing problem

8
>>>><

>>>>:

H0 :

(
r = n

ri = ni, i = 1, . . . ,K

H1 :

(
r = ↵p+ n

ri = ni, i = 1, . . . ,K

(4.1)

where r is the primary data, ↵ is an unknown complex parameter which
accounts for the target reflectivity and the channel propagation effects,
whereas p denotes the spatial steering vector evaluated at ✓0, which is
assumed known at the design stage. Besides, a set of secondary data
ri, i = 1, . . . ,K, free of the useful signal and with the same covariance
matrix as the primary data (homogeneous environment) [60, 93, 14, 101],
is supposed available. The interference plus noise components n and ni,
i = 1, . . . ,K, are modeled as IID zero-mean circularly symmetric Gaussian
random vectors, with unknown (but possibly structured) covariance matrix
given by

M(✓) = E[nn
†
] = E[nin

†
i ], i = 1, . . . ,K (4.2)

where ✓ denotes the vector of the unknowns parameterizing the structure
of M .

4.1. Problem Formulation 75

Let us now frame the detection problem in a context with missing-
data caused by random failures of some array elements [123, 68, 111, 116]
or possible transmission-reception faults experienced by distributed radar
systems [51] or wirelessly networked aperstructure digital phased array
radars [46], etc. For the case at hand, the observed primary data is modeled
as

z = Ar (4.3)

where A is an appropriate p⇥N selection matrix; specifically, denoting by
1,2, . . . ,N�p 2 {1, . . . , N} the indices of the channels where a missing-
data occurs in the snapshot from the CUT, A is obtained from the N ⇥
N identity matrix, by deleting the rows indexed by (1,2, . . . ,N�p).
Similarly, each secondary observed snapshot can be modeled as

zi = Airi, i = 1, . . . ,K (4.4)

with Ai the pi ⇥ N selection matrix of the i-th snapshot which is de-
fined similarly to A. In the following, the vectors r, ri, i = 1, . . . ,K, and
z, zi, i = 1, . . . ,K, will be referred to as the complete and the observed

data, respectively. Accordingly, the variables p and pi indicate the number
of the actual available channels, i.e., the number of observed elements, in
the primary r and the i-th secondary snapshot ri, i = 1, . . . ,K, respec-
tively2.

Hence, leveraging the observed-data model in (4.3) and (4.4), the target
detection problem in the presence of missing-data can be cast as

8
>>>><

>>>>:

H0 :

(
z = An

zi = Aini, i = 1, . . . ,K

H1 :

(
z = ↵Ap+An

zi = Aini, i = 1, . . . ,K

(4.5)

where the unknowns are ✓ under H0 and ↵, ✓ under H1.

2From a physical point of view, the selection matrices A and Ai, associated with r

and ri, i = 1, . . . ,K, respectively, provide the components of the complete-data vectors
into the observed-data space. As a result, the number of rows p (pi) of the selection
matrix A (Ai) denotes the dimension of the complex space where the observed-data in
the considered (i-th secondary) snapshot lies.

ideal case (no missing-data) missing-data case
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Adaptive Radar Detection in the Presence of Missing-Data [2/3]
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Requires th: estimation of            and     
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mization of appropriate observed-data likelihood functions under the two
hypotheses. Hence, in Section 4.2, an EM-based framework is also de-
vised to tackle the resulting optimization problems and derive practical
detectors. The performance of the mentioned detectors is analyzed in Sec-
tion 4.3, whereas conclusions are drawn in Section 4.4.
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Requires th: estimation of4B
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Computed by means of the previous EM estimation algorithm 

EM-based 
algorithm

M-step

E-step

4.2. Design of Decision Rules 77

view this represents the main innovation of this chapter.

4.2.1 Parameters estimation under H1

The EM procedure starts with an initial guess of the parameters, i.e.,
✓̄
(0)

= [↵
(0)

,✓
(0)

T
]
T, and iterates between the E-step and the M-step, until

convergence [42]. Specifically, at the h-th iteration, the E-step involves the
evaluation of the score function

Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘

= E[Lr(↵,✓, H1)|z,Z,A,A1, . . . ,AK ,↵
(h�1)

,✓
(h�1)

, H1]

(4.6)

where

• Z = {z1, . . . , zK} is the set of observed secondary data;

• ↵
(h�1) and ✓

(h�1) are the estimates at the (h� 1)-th iteration;

• Lr(↵,✓, H1) is the complete-data log-likelihood given by

Lr(↵,✓, H1) =� (K + 1) [N ln(⇡) + ln(det(M(✓)))]

� tr
n
M(✓)

�1
[(r � ↵p)(r � ↵p)

†
+ S]

o (4.7)

• S =
PK

i=1
rir

†
i is proportional, via K, to the conventional secondary

data SCM.

Computing the conditional expectation involved in (4.6) yields (see
Appendix C.1 for details on the statistical expectation evaluation)

Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘
= �(K + 1) [N ln(⇡) + ln(det(M(✓)))]

�tr
n
M(✓)

�1
[(µ

(h�1) � ↵p)(µ
(h�1) � ↵p)

†
+⌃(h�1)

]

o (4.8)

where (the detailed expression is provided in (C.6) and (C.7))

µ
(h�1)

= E[r|z,A,↵
(h�1)

,✓
(h�1)

, H1] (4.9)
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and (see (C.8)-(C.16) for the detailed derivation)

⌃(h�1)
=

 
KX

i=1

E[rir
†
i |zi,Ai,✓

(h�1)
]

!
� µ

(h�1)
µ
(h�1)

†

+ E[rr
†|z,A,↵

(h�1)
,✓

(h�1)
, H1].

(4.10)

After the computation of the E-step, the M-step is performed, i.e., the
score function (4.8) is maximized providing the following updated estimate
of the unknowns

⇣
↵
(h)

,✓
(h)
⌘
= argmax

↵, ✓:M(✓)2C
Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘
. (4.11)

Still, as in the H0 case analyzed in Chapter 3, different solution strategies
to the optimization problem (4.11) are connected to diverse feasible sets C .
In this regard, some relevant cases of interest are analyzed in the following.

Unconstrained estimation

For this special and relevant case, the optimal solution to the M-step
is available in closed-form, i.e., [60]

↵
(h)

=
p
†
[⌃(h�1)

]
�1

µ
(h�1)

p† [⌃(h�1)]�1 p
(4.12)

and

M(✓
(h)

) =
(µ

(h�1) � ↵
(h)

p)(µ
(h�1) � ↵

(h)
p)

†
+⌃(h�1)

K + 1
. (4.13)

Centro-Hermitianity constraint

As already described in 3.2.2, Centro-Hermitian is a particular matrix
structure, commonly satisfied by covariance matrices encountered in many
radar signal processing applications, e.g., radar systems utilizing standard
rectangular, hexagonal, uniform circular, or cylindrical array [105]. En-
forcing this structure is tantamount to considering M belonging to the
constraint set (3.6).

Devised in closed-form for
some specific covariance
matrix uncertainty set



Adaptive Radar Detection in the Presence of Missing-Data [3/3]

17

No specific covariance structure

86 Chapter 4. Adaptive Radar Detection in the Presence of Missing-Data

0 5 10 15 20 25 30 35 40 45 50

SINR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

(a)

0 5 10 15 20 25 30 35 40 45 50

SINR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

(b)

Figure 4.1. Detection performance for an ULA with N = 16 antennas and
unconstrained estimation. Different sample support sizes are considered, i.e.,
(a) K = 48 and (b) K = 64.

tailored GLRT and AMF detectors, leveraging the Centro-Hermitianity
(CH) structure for the estimation of the covariance matrix, are reported,
too. Specifically, those computed on the complete-data set serve as bench-
marks, whereas those evaluated on the observed-data set, with missing-
data replaced by appropriately interpolated values, are considered as coun-
terparts.

Inspection of the results shows that the proposed detectors ensure per-
formance levels close to the benchmark with a gap between the curves
less than 2 dB at PD = 0.9 and K = 30. This is an indirect proof
that capitalizing on the centro-Hermitian structure, accurate estimation
of the unknowns could be obtained under both hypotheses, resulting in
improved detection performance even with a reduced number of secondary
data. Besides, both the devised one-step and two-step strategies achieve
similar performance levels, with PD values closer and closer to the bench-
mark as K increases, further corroborating the effectiveness of the bespoke
detectors. Summarizing, the proposed detectors outperform all the con-
sidered (practically implantable) counterparts in the analyzed scenarios,
confirming the capabilities of the devised adaptive architectures to oper-
ate in contexts with missing-data and structured covariance matrix.
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Figure 4.3. Detection performance for a ULA with N = 16 antennas assum-
ing the uncertainty set in (3.2). Different sample support sizes are considered,
i.e., (a) K = 24 and (b) K = 48.

tation process, especially in the presence of missing observations. More
specifically, for K = 24, the loss with respect to the clairvoyant is less
than 1 dB for the AMF-EM-FML and less than 2 dB for the two GLRT-
based receivers. Besides, as K increases, the loss reduces progressively
more and more, as depicted in Fig. 4.3(b).

4.3.4 Analysis on measured data

In this subsection, the performance of the devised detectors is analyzed
on the measured data set collected in [94]. Specifically, the test-bed used
for the acquisition process consists of

• a low-cost Software Defined Radio (SDR) coherent receiver made up
of four RTL-SDR dongles (based on the RTL2832U chipset manu-
factured by Realtek [102]) that share the same clock source;

• a standard personal computer, used to calibrate the devices and run
algorithms;

• a ULA comprising four dipole antennas with an inter-element space
of �0/2.

Structured covariance matrix with a lower 
bound on the white disturbance power level 
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Figure 5.1. Signal transmission and reception in FDA-MIMO radar.

5.1.2 Received Signal Model

For a point-like target with a constant Radar Cross-Section (RCS)
over the FDA-MIMO radar bandwidth, located in far-field at the angle ✓t

and range Rt (see Fig. 5.1) [64, 65], the complex envelope of the signal
received by the n-th radiating element (n = 1, 2, · · · , N) due to the signal
transmitted by the m-th antenna (m = 1, 2, · · · ,M) can be expressed
as [66]

ym,n(t) = �xm(t� ⌧m,n)e
j2⇡fm(t�⌧m,n) ⇡ �xm(t� ⌧0)e

j2⇡fm(t�⌧m,n),

(5.4)

where ⌧m,n =
2Rt�d(n�1) sin(✓t)�d(m�1) sin(✓t)

c is the round-trip propagation
time, � is the complex echo amplitude (accounting for the transmit ampli-
tude, phase, target reflectivity, and channels propagation effects), d is the
array’s inter-element spacing, and c is the speed of light. The approxima-
tion relies on the narrowband assumption, i.e., xm(t� ⌧m,n) ⇡ xm(t� ⌧0),
with ⌧0 =

2Rt

c the customary envelope time delay.
After the pre-processing of Fig. 5.2, it can be shown that, under some

mild technical conditions (see Appendix A of [66]), the received useful
samples from the CUT can be stacked to form a MN ⇥ 1-dimensional
vector

yS = �1b (✓t)⌦ [c (✓t)� a (�⌧)] = �1s(✓t,�⌧), (5.5)
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and range Rt (see Fig. 5.1) [64, 65], the complex envelope of the signal
received by the n-th radiating element (n = 1, 2, · · · , N) due to the signal
transmitted by the m-th antenna (m = 1, 2, · · · ,M) can be expressed
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time, � is the complex echo amplitude (accounting for the transmit ampli-
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array’s inter-element spacing, and c is the speed of light. The approxima-
tion relies on the narrowband assumption, i.e., xm(t� ⌧m,n) ⇡ xm(t� ⌧0),
with ⌧0 =

2Rt

c the customary envelope time delay.
After the pre-processing of Fig. 5.2, it can be shown that, under some

mild technical conditions (see Appendix A of [66]), the received useful
samples from the CUT can be stacked to form a MN ⇥ 1-dimensional
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Now, concentrating (5.9) over �1 yields

�̂1 =
s
†
(u, �)Q

�1
z

s† (u, �)Q�1s (u, �)
. (5.10)

Hence, substituting (5.10) into the objective function of (5.9) as well
as dropping constant and irrelevant terms leads to

max

u2[�1,1],�2[��f

B
,�f

B
]

��s† (u, �)Q�1
z
��2

s† (u, �)Q�1s (u, �)
. (5.11)

Finally, the ML estimates of u and � can be obtained as maximizers of

P (u, �) = |w0
†
(u, �) z|2, (5.12)

where w0 (u, �) =
⇥
s
†
(u, �)Q

�1
s (u, �)

⇤� 1

2 Q
�1

s (u, �) 2 C
MN .

5.2.2 Approximated Methods for Range and Angle Esti-
mation

The ML rule can be practically implemented via a 2-D grid search.
To reduce the computational cost required by the foregoing procedure, it
is valuable to design approximated solution methods. To this end, this
section is focused on designing: 1) a CD algorithm; 2) AMPs.

Coordinate Descent Algorithm

An approximation of the optimal 2-D search involved in (5.12) is de-
veloped via the CD method. This leads to a sequence of 1-D searches
obtained alternating between the optimization over each variable keeping
the other fixed. The problem of finding the maximizer of each 1-D search is
tackled using the grid search method where the feasible interval of interest
is discretized in a finite set of points. Specifically, the 1-D searches w.r.t.
u and � are respectively conducted over the discretized intervals Iu and
I�, defined as

Iu = {�1 +
2i

Nu
, i = 0, . . . , Nu} (5.13a)

Solve

1. CD-based method
2. Adaptive Monopulse Procedure
3. Adaptive Generalized Monopulse Procedure with 

Complex Correction
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4 Tx and 10 Rx antennas,	5 = 1	MHz, Δ; = 0.5	MHz 
2 narrow-band jammers with JNR = 30 dB

RMSE – angle (>) estimation RMSE – incr. range (?) estimation
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Figure 5.5. Comparison of RMSE (dB) for some u and �: (a) and (d) u =

0.891/(2(N +M)), � = ��f/(2B), (b) and (e) u = �0.891/(2(N +M)), � =

��f/(4B), (c) and (f) u = 0, � = 0, assuming two coherent repeaters, with
SINR = 30dB, located at u1 = 5(0.891/(N+M)) and u2 = �6(0.891/(N+M))

with incremental range of �1 = �f/(3B) and �2 = ��f/(8B), respectively.
The RMSE analysis w.r.t. u is reported in (a), (b), and (c), whereas that
w.r.t. � is reported in (d), (e), and (f).
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Figure 5.5. Comparison of RMSE (dB) for some u and �: (a) and (d) u =

0.891/(2(N +M)), � = ��f/(2B), (b) and (e) u = �0.891/(2(N +M)), � =

��f/(4B), (c) and (f) u = 0, � = 0, assuming two coherent repeaters, with
SINR = 30dB, located at u1 = 5(0.891/(N+M)) and u2 = �6(0.891/(N+M))

with incremental range of �1 = �f/(3B) and �2 = ��f/(8B), respectively.
The RMSE analysis w.r.t. u is reported in (a), (b), and (c), whereas that
w.r.t. � is reported in (d), (e), and (f).
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