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Shape the noise
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Creating noise from data is easy; creating data from noise is generative modeling.

Danilo Comminiello

Image generated by ideogram. Source: Yang Song blog.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-Based Generative Modeling through Stochastic Differential Equations, Int. Conf. On Learning 
Representations (ICLR), 2021.

https://ideogram.ai/
https://yang-song.net/blog/2021/score/
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Where Generative AI comes from
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Generative AI

Generative Modeling Deep Learning



Discriminative vs Generative
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Discriminative Modeling Generative Modeling



Discriminative modeling
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Discriminative modeling usually refers to supervised learning, or learning a function 
that maps an input to an output using a labeled dataset.

D. Foster, Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play, 2nd ed. O’Reilly Media, Inc., May 2023.



Generative modeling
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A generative model describes how a dataset is generated, in terms of a probabilistic 
model. By sampling from this model, we can generate new data.



The generative modeling framework
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Let us consider a complex and large-scale dataset 𝓧 of observations 𝐱.

We assume 𝐱 drawn from some unknown probability distribution 𝑝data.

The goal of a generative model is to provide an estimate of the data distribution 

𝑝(𝐱) from which drawing new observations that appear to have been drawn from 𝑝data.



The fundamental laws of a generative model
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We can say that a generative model is impressive if it satisfies the following 

fundamental rules:

1. It must generate new samples that appear to have been drawn from the original

distribution of the data 𝑝data.

2. It must generate new samples that did not exist before in the original dataset 𝓧.



Example of a generative modeling
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Let us consider a dataset of observations 𝐱 

whose elements are cities (blue points) of a 

map, which represents the original data 

distribution 𝑝data.

We want to generate new points.



Example of a generative modeling
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The new generated points (orange) do not 

represent a reliable generative model, as 

they fall outside the data distribution, thus 

not satisfying the first fundamental rule of 

generative modeling.



Example of a generative modeling
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The new generated points (yellow) do not 

represent a reliable generative model, as 

they significantly overlap with existing 

points, thus not satisfying the second 

fundamental rule of generative modeling.



Example of a generative modeling
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The new generated points (green) denote a 

good generative model, as they appear to 

have been drawn from the original data 

distribution and did not exist before, thus 

satisfying the fundamental rules of 

generative modeling.



This slide does not exist
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https://thisxdoesnotexist.com/


Why generative models are attractive
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• Generative processes are able to express physical laws, while considering

meaningless details as noise.

• Generative models are usually highly intuitive and interpretable.

• Generative processes express causal relations, thus being able to generalize

much better to new situations than mere correlations.



THE ROLE OF DEEP LEARNING

IN GENERATIVE FRAMEWORKS
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Dealing with real-world, complex, and large-scale data

Modern ICT applications cannot ignore the complexity of real data, which may

exhibit:

• High-dimensional, complicated probability distributions;

• Damaged or missing information;

• Partially labeled or completely unlabeled data;

• High resolutions and QoS constraints;

• Multimodality.

20Danilo Comminiello



Generative modeling challenges
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Generative modeling theory has been widely applied to classic machine learning

algorithms (e.g., naïve Bayes classifiers).

However, 1) in presence of a big amount of data, it is not easy for a model cope

with the high degree of conditional dependence between features.

Moreover, 2) the larger the input data space, the more difficult it is to produce an

output that satisfies the generation constraints.



Deep learning is a solution

22Danilo Comminiello

Deep learning is the key to solving both of these challenges due to its ability to

form its own features in a lower-dimensional space.

The real power of deep learning, especially with regard to generative modeling,

comes from its ability to work with complex and unstructured data.

Deep learning methods rely on multiple stacked layers of processing units to learn

high-level representations from data.



Learning high-level representation
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The way human brain learns is inherently hierarchical, thus being able to provide a

deeper representation.

Image source: Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/


Neural networks parameterize generative models

24Danilo Comminiello

Neural networks are flexible and powerful and, therefore, they are widely used to parameterize

generative models.
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Neural networks parameterize generative models
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Neural networks are flexible and powerful and, therefore, they are widely used to parameterize

generative models.



Generative models can benefit from different neural architectures
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A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive Into Deep Learning, 2020.

Multi-layer perceptron (MLP) Long short-term memory (LSTM) network

Convolutional neural network (CNN) ResNet-18 architecure Vision Transformer

Recurrent neural network (RNN)



Steps for generating new data
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The process to generate new data by using deep learning usually follows the next

steps:

1. Sample from a known distribution

2. Optimize a likelihood-based loss (or any implicit variant).

3. Train the model.

4. Decode a representation to draw a new sample.

The new sample must belong to the underlying distribution of the data points and

it must never have been seen before.



A TAXONOMY OF

DEEP GENERATIVE MODELS
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Possible taxonomy of deep generative models
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Deep generative models differentiate in how they express 𝑝(𝐱).



Characteristics of deep generative models
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Timeline
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The first VAE!
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The first GAN!



Timeline
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Timeline

37Danilo Comminiello

2
0

1
1

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
8

2
0

2
0

0
1

/2
0

2
1

Text-to-Image!



Timeline
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Timeline
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Text-to-Video!
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Timeline
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GENERATIVE ADVERSARIAL

NETWORKS
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It was a dark and stormy night in Montréal..

42Danilo Comminiello

One night in 2014, Ian Goodfellow, the “GANfather”, came up with the generative

adversarial network (GAN) while drinking beer in a pub with friends.



Generative art
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Edmond de Belamy is a GAN portrait

painting of 2018 by Paris-based arts-

collective Obvious. It was selled as the first

artwork created using articial intelligence

in a Christie’s auction for 432,500$.



Generative art

44Danilo Comminiello



GAN framework
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The generative adversarial network is composed of two models competing with each other, known as

generator 𝐺(⋅) and discriminator 𝐷(⋅).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, arXiv preprint: arXiv:1406.2661v1, 2014.



Adversarial training of a GAN
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I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, arXiv preprint: arXiv:1406.2661v1, 2014.



Goal of the generator
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𝐷(⋅) aims at maximizing the log-likelihood for

the binary classification problem:

• original data: real (1)

• generated data: fake (0)

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, arXiv preprint: arXiv:1406.2661v1, 2014.



Goal of the discriminator
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𝐷(⋅) aims at maximizing the log-likelihood for

the binary classification problem:

• original data: real (1)

• generated data: fake (0)

𝐺(⋅) aims at minimizing the log-probability of its

samples being classified as “fake” by 𝐷(⋅).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, arXiv preprint: arXiv:1406.2661v1, 2014.



GAN pros and cons
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High expressiveness and adaptability to many application cases.

Fast sampling, even for the generation of multiple samples at the same time.

Direct optimization for what you care about by using perceptual samples.

Unstable during training.

Poor control, as GANs do not work directly with data distribution.



GENERATIVE LATENT VARIABLE

MODELS

50Danilo Comminiello

5



Latent representation
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In the Plato’s Allegory of the Cave, a group

of people are chained inside a cave their

entire life and can only see the two-

dimensional shadows projected onto a wall

in front of them, which are generated by

unseen three-dimensional objects passed

before a fire. To such people, everything

they observe is actually determined by

higher-dimensional abstract concepts that

they can never be hold.

C. Luo, Understanding diffusion models: A unified perspective, arXiv 
preprint: arXiv:2208.11970v1, pp. 1–23, Aug. 2022.

https://en.wikipedia.org/wiki/Allegory_of_the_cave


Low-dimensional representation learning
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Representation learning refers to the ability of

neural networks to describe each observation in the

training set using some low-dimensional latent

space.

Each point in the latent space, known as a latent

variable, is the most significant representation of

some high-dimensional observation.

D. Foster, Generative Deep Learning – Teaching Machines to Paint, Write, Compose and 

Play, 2nd ed. O’Reilly Media, Inc., May 2023.



Generating by latent variables

53Danilo Comminiello

Let us suppose that we have a collection of images with horses

and we want to learn 𝑝(𝐱) to generate new images.

We can ask ourselves how we should generate a horse.

There are some factors in data (e.g., a silhouette, a color, a

background) that are crucial for generating an object (here, a

horse). Once decided, we can generate them by adding details.

D. Foster, Generative Deep Learning – Teaching Machines to Paint, Write, Compose and 

Play, 2nd ed. O’Reilly Media, Inc., May 2023.



Generating by latent variables

54Danilo Comminiello

Let us suppose that we have a collection of images with horses

and we want to learn 𝑝(𝐱) to generate new images.

We can ask ourselves how we should generate a horse.

There are some factors in data (e.g., a silhouette, a color, a

background) that are crucial for generating an object (here, a

horse). Once decided, we can generate them by adding details.

Like painting.



Generation process from a low-dimensional latent space
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We first sample 𝐳 (e.g., size, shape, and color of a horse) and then create an image with all necessary

details, i.e., we sample 𝐱 from the conditional distribution 𝑝(𝐱|𝐳).



Variational inference
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Intractable approximate (or variational) inference



Autoencoder
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An autoencoder is a neural network architecture that is classically suited for denoising and

reconstruction of an input, but it can be used also to reduce the input dimensionality and extract a

latent representation.



Variational autoencoder approach
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In the Variational Autoencoder, the encoder 𝑞(𝐳|𝐱), or recognition model, defines a distribution over 

latent variables 𝐳 for a set of observations 𝐱, while the generation model 𝑝(𝐱|𝐳) decodes latent

variables into observations.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive Into Deep Learning, 2020.



Variational autoencoder framework
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A variational autoencoder introduces a control over the latent distribution.

D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, arXiv preprint: arXiv:1312.6114v10, May 2014.



Variational autoencoders: training
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focuses on the reconstruction forces the latent distribution to be Gaussian



Variational autoencoders: training

61Danilo Comminiello

variational bound, or 
evidence lower bound (ELBO)



Variational autoencoders: generation
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When a semantically meaningful latent space is learned, latent vectors can be edited before being

passed to the decoder to more precisely control the data generated.

At inference, a sample is drawn from 𝒩(0, 𝐈) and passed to the decoder which generates new data.



VAE pros and cons
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The latent space can be very small therefore useful for many applications.

Fast sampling, even for the generation of multiple samples at the same time.

VAEs approximate the distribution of the data, so the samples can be imprecise.

VAEs are not easy to train due to the two terms in the function to be optimized.



Markovian hierarchical variational autoencoder
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A Hierarchical Variational Autoencoder (HVAE) is a generalization of a VAE that extends to multiple

hierarchies over latent variables.

A special case is the Markovian HVAE (MHVAE), in which the generative process is a Markov chain.

C. Luo, Understanding diffusion models: A unified perspective, arXiv preprint: arXiv:2208.11970, pp. 1–23, Aug. 2022.



What is a diffusion process?
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The diffusion process aims to capture the

dynamics of how latent variables disperse and

diffuse in the data.

Image generated by ideogram.

https://ideogram.ai/


Variational diffusion approach
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A Variational Diffusion Model (VDM) can be seen as an MHVAE with three key assumptions:

1. The latent dimension is exactly equal to the data dimension.

2. The structure of the latent encoder at each timestep is not learned but pre-defined as a linear

Gaussian model (i.e., a Gaussian distribution centered around the output of the previous

timestep).

3. The Gaussian parameters of the latent encoders vary over time in such a way that the

distribution of the latent at final timestep T is a standard Gaussian.

Furthermore, the Markov property between hierarchical transitions is explicitly maintained from a

standard MHVAE.

C. Luo, Understanding diffusion models: A unified perspective, arXiv preprint: arXiv:2208.11970, pp. 1–23, Aug. 2022.



The variational diffusion process
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C. Luo, Understanding diffusion models: A unified perspective, arXiv preprint: arXiv:2208.11970, pp. 1–23, Aug. 2022.

Each encoder transition 𝑞(𝑥𝑡|𝑥𝑡−1) is modeled as a Gaussian distribution that uses the output of the

previous state as its mean.

true data observations pure Gaussian noise

intermediate 
noisy version



Denoising diffusion probabilistic model
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J. Ho, A. Jain, and P. Abbeel, Denoising Diffusion Probabilistic Models, in Conference on Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 6840–6851.

In the DDPM architecture a U-Net model can be used to learn predicting the source noise in diffusion models.



Diffusion models pros and cons
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High expressiveness, and even more controllable than GANs and VAEs.

Easier convergence with respect to GANs and VAEs.

Slower sampling with respect to GANs and VAEs.

Latent space dimension is large and requires huge computational resources.



GENERATIVE AI IN
ICT APPLICATIONS
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Transformative role in ICT

• Personalized experiences

• Autonomous networks

• Streamlines operations

• Data security and reliability

• Human in the loop

71Danilo Comminiello

Google Cloud

https://cloud.google.com/blog/topics/telecommunications/the-promise-of-generative-ai-in-telecommunications


Solving Inverse problems

72Danilo Comminiello
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Image generation

Medium.

https://medium.com/international-school-of-ai-data-science/the-art-of-generative-modeling-exploring-diffusion-models-f16f9a12aac0
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Image editing

C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, S. Ermon, SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, in 
Int. Conf. on Learning Representations (ICLR) 2022.
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Image denoising

Medium.

https://medium.com/international-school-of-ai-data-science/the-art-of-generative-modeling-exploring-diffusion-models-f16f9a12aac0
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Inpainting

A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, L. Van Gool, RePaint:
Inpainting Using Denoising Diffusion Probabilistic Models, Proc. of the IEEE/CVF 
Conf. on Computer Vision and Pattern Recognition (CVPR), , pp. 11461-11471, 2022

Medium.

https://medium.com/international-school-of-ai-data-science/the-art-of-generative-modeling-exploring-diffusion-models-f16f9a12aac0
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Inpainting
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Super-resolution

Medium.

https://medium.com/international-school-of-ai-data-science/the-art-of-generative-modeling-exploring-diffusion-models-f16f9a12aac0
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Image Modality Translation

E. Grassucci, L. Sigillo, A. Uncini, D. 
Comminiello, GROUSE: A Task and
Model Agnostic Wavelet-Driven
Framework for Medical Imaging, to
Appear in IEEE Signal Process. Lett.,
2023
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Image Modality Translation

L. Sigillo, E. Grassucci, D. Comminiello, StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation, in IEEE Int. Symp. On
Circuits and Systems (ISCAS), Monterey, CA, May 2023.
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Image Modality Translation

L. Sigillo, E. Grassucci, D. Comminiello, StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation, in IEEE Int. Symp. On
Circuits and Systems (ISCAS), Monterey, CA, May 2023.
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Image Modality Translation

L. Sigillo, E. Grassucci, D. Comminiello, StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation, in IEEE Int. Symp. On
Circuits and Systems (ISCAS), Monterey, CA, May 2023.
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Image Modality Translation

L. Sigillo, E. Grassucci, D. Comminiello, StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation, in IEEE Int. Symp. On
Circuits and Systems (ISCAS), Monterey, CA, May 2023.



Generative Semantic Communication
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Semantic
Generation

Images generated with: E. Grassucci, S. Barbarossa, D. Comminiello, Generative Semantic 
Communication: Diffusion Models Beyond Bit Recovery, arXiv preprint arXiv:2306.04321, 2023.

Different samples with 
preserved semantic scenario



Video generation

85

Images on generative AI applications

Danilo Comminiello

E. Molad, E. Horwitz, D. Valevski, A. R. Acha, Y. Matias, Y. Pritch, Y. Leviathan, Y. Hoshen, Dreamix:
Video Diffusion Models are General Video Editors, arXiv preprint: arXiv:2302.01329, 2023.
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G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-Or, A. H. Bermano, Human Motion Diffusion Model, arXiv preprint arXiv:2209.14916, 2022.

Computer graphics and animation



Generative AI for digital twin
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Image credit: Pietro Barbiero et al, University of Cambridge, UK



Generative design technology

• Structural topology optimization optimizes the material layout within given design spaces for a

given set of functional requirements and constraints.

• This reduces the amount of material required to meet product requirements and reduces

material waste and cost.

• Combining topology optimization and additive manufacturing gives manufacturers the capability

to produce complex shapes that were previously impossible, and it accelerates the production of

finished parts.

88Danilo Comminiello



CONCLUSION AND FUTURE

DIRECTIONS
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Training data matter

90Danilo Comminiello

Semantic
Generation



Data dependence

91Danilo Comminiello

Semantic
Generation

OMG!



Inference time
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Diffusion models training is stabler with respect to GANs and VAEs.

The diffusion model sampling needs several steps of a Markov chain.

Communication systems need fast inference, while diffusion models suffer from slow sampling.



Generative models are huge
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To obtain impressive results in real-world datasets and scenarios, deep generative models require a 
huge number of learnable parameters.

Large storage memory demand just for storing the learned weights of a pretrained generative 
model (even only for doing inference).

890M learnable parameters

3.5GB storage memory required



Sustainability and resource management

94Danilo Comminiello

Deep generative models require large computational resources and consequently very high energy 
consumption.

Needs GPUs with large VRAM and often takes days of computation, producing a massive amount of 
CO2.

Also the inference needs GPUs that are hard to embed on smaller devices.



What we can do and future directions
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Reduce the computations or make network blocks reusable by considering pruning, quantization, 
and modular networks.

Release code and pretrained models to make them accessible and available for future researchers.

Fine-tune the released models without retraining them.

Develop faster sampling strategies tailored for communication systems.
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