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Decentralized datasets
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Privacy

Federated Learning

Good computational power at the edge devices
@ Communication is usually expensive
Challenge: reducing the amount of communication

In this thesis:
- Design communication efficient algorithms
- Analyze the effect of communication constraints on algorithms’ convergence
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Superlinear federated learning: notation

M agents with datasets {Dy, ..., Dy} aim to iteratively minimize a cost function
1 M
f(8) = 77 2_i=1 fi(6)
e 0" c R" is the n-dimensional global parameter at iteration t,

e f;(0) is the local cost of agent i,

° U§’) IS the optimization set shared by agent / at iteration t.
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Distributed gradient descent

Let g, = VF(8') € R" and H; = V?f(8") € R"*" denote the gradient and the
Hessian matrix of the cost function.

Distributed gradient descent consists of iteratively performing:
o' =6" — Nt

where 7; I1s the step size. We have assumed w.l.o.g. that all agents have the
same number of data samples.
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Distributed gradient descent

Let g, = VF(8") € R” and H; = V2f(8") € R™" denote the gradient and the
Hessian matrix of the cost function.

Distributed gradient descent consists of iteratively performing:

1 .
0t =0"—ngr = 0" — m(m Zg(t’))-
=1
where 1 Is the step size. We have assumed w.l.0.g. that all agents have the
same number of data samples.

: scales well

Cons: convergence rate heavily impacted by the condition number
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Distributed Newton method

Let g, = VF(8") € R” and H; = V21 (8") € R"*" denote the gradient and the
Hessian matrix of the cost function.

The Newton method consists of iteratively performing the Newton update:
o't = 6" — mHt‘lgt

where 7m; I1s the step size. We have assumed w.l.o.g. that all agents have the
same number of data samples.
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Distributed Newton method

Let g, = VF(0) € R" and H; = V?f(8") € R"*" denote the gradient and the
Hessian matrix of the cost function.

The Newton method consists of iteratively performing the Newton update:

M
1 - 1 -
t+1 _ pt ~1, _ pt (1)y—1 (1)
6 =60 —mnH; "g: =20 —m(M ,E_l H.’) (/\//iE_l:gt ),
where 7m; I1s the step size. We have assumed w.l.o.g. that all agents have the

same number of data samples.

Pros: superlinear convergence speed independent of the condition number

Cons: significantly more demanding from a computation and communication point of view
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Approximate Newton method

Approximate Newton-type methods use approximations of the Hessian, H. so a
Newton-type parameter update Is

A -1
0"t =o' —m:H, g,

where I:h IS an approximation of the Hessian matrix.

: can we provide superlinear convergence in a communication-efficient way?

N. Dal Fabbro, S. Dey, M. Rossi and L. Schenato, “SHED: A Newton-type algorithm for federated learning based on incremental
Hessian eigenvector sharing”, 2024, Automatica

N. Dal Fabbro, M. Rossi, L. Schenato, S. Dey “Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization”, IEEE International Conference on Communications, Rome 2023 26



State of the art

Wang, Shusen, et al. "GIANT: Globally improved approximate newton method for distributed
optimization." Advances in Neural Information Processing Systems 31 (2018).

Rixon Crane and Fred Roosta. 'DINGO: Distributed Newton-type method for gradient-norm
optimization’. Advances in Neural Information Processing Systems 32 (2019).

Safaryan, Mher, et al. 'FedNL: Making Newton-type methods applicable to federated learning.’
International Conference on Machine Learning 39 (2022).

Agafonov, Artem, et al. 'FLECS: A Federated Learning Second-Order Framework via
Compression and Sketching.’ arXiv preprint arXiv:2206.02009 (2022)

Elgabli, Anis, et al. 'FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type
Method for Federated Learning.’ International Conference on Machine Learning 39 (2022).
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SHED: a Newton-type algorithm for FL based on eigendecomposition
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Strengths of SHED

o Global convergence with asymptotic superlinear rate

« Versatility - each agent can share a number of eigenvectors based on their
communication resources

o Only sporadic Hessian computations required

N. Dal Fabbro, S. Dey, M. Rossi and L. Schenato, “SHED: A Newton-type algorithm for federated learning based on incremental
Hessianeigenvector sharing”, Automatica, 2024
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Required computations of the Hessian
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Communication-efficient
second-order methods

SHED: an original algorithm
based on Hessian
eigenvectors sharing

This thesis

Federated Learning

Federated reinforcement
learning

Theoretical foundations: the
benefits of cooperation

under communication
constraints
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Federated reinforcement learning
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s it possible to provide finite-sample analysis for federated

reinforcement learning under communication constraints?

4 »
%

Agent N

e Goal
« Finite-sample convergence guarantees
o Achieve a linear convergence speedup
w.r.t. the number of agents N
o Challenges
e Markovian sampling
« Communication constraints
(e.g., wireless networks)
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Related work and novelty

Federated Learning

=

- Server

Distributed optimization under communication constraints

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3), 50-60.

Amiri, Mohammad Mohammadi, and Deniz Gindlz. "Federated learning over wireless fading
channels." IEEE Transactions on Wireless Communications 19.5 (2020): 3546-3557.

Konec&ny, Jakub, et al. "Federated learning: Strategies for improving communication efficiency."
arXiv preprint arXiv:1610.05492 (2016).

Chen, Mingzhe, et al. "A joint learning and communications framework for federated learning
over wireless networks." IEEE Transactions on Wireless Communications (2020)
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Contributions

We provide the first finite-sample convergence analysis for federated

reinforcement learning under communication constraints, establishing a linear
convergence speedup with the number of agents

Finite-
sample
convergence

Reinforcement .
L . Constraints
€arning Linear

convergence
speedup with N
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Temporal difference (TD) learning

011 = 0 + agp(0y, o)

Finite-sample analysis of this update rule under Markovian sampling has been recently established and provides

1
@) (T) approximation error after /" iterations

Bhandari, Jalaj, Daniel Russo, and Raghav Singal. "A finite time analysis of temporal difference learning with linear function
approximation." Conference on learning theory, 2018

Srikant, Rayadurgam, and Lei Ying. "Finite-time error bounds for linear stochastic approximation andtd learning." Conference on Learning

Theory, 2019
43
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Federated TD learning over quantized communication: QFedTD
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N. Dal Fabbro, A. Mitra, G. J. Pappas, "Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling". IEEE

Control Systems Letters, 2023

47



Over-the-air federated TD learning: OAC-FedTD
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Asynchronous multi-agent TD learning: AsyncMATD
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Main Result

Theorem (convergence analysis of QFedTD)

If a > 0 small enough, then the iterates of QFedTD are such that

7-0'2
E [llo* - o7l°| <0 —3p00)€+0 (CQN ) + ()

bias term negligible terms

statistical terms

Main takeaways: we show the impact of the channel effects ¢ and p on
the convergence. We establish a linear convergence speedup with the
number of agents N. We obtain a linear dependence on the mixing time of

the Markov chain, 7 .
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Future directions

Superlinear FL:
e Scaling up existing algorithms from a computational point of view

FRL:

e Heterogeneity/personalization, local optimization
Federated Multi-Agent reinforcement learning

sample complexity and communications even more critical
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