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INTRO: NETWORK PROGRAMMABILITY

• Since 2009, SDN and NFV paradigms have 
emerged:

• to alleviate the problem of the ossification of the 
Internet architecture

• SDN: programmable abstraction, like OpenFlow

• Too much delegation to the centralized controller

• Far from being a solution to “all” networking needs

• NFV: Network functions redesigned in software 
and deployed in virtualized networking scenarios

• Most of the clock cycle spent by the software is in 
accessing the memory;

• Large and highly variable latency.
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INTRO: CPUS ARE AT A STANDSTILL

• Moore’s law (transistor/chip 2X every 1.5 years)  

slowing down!

• Dennard Scaling (power/area remains constant)  

not true since 2007!

• Power is the bottleneck!

• (downscale chip speed to avoid… burning it…!)

• Amdahl’s law Multicore is bounded up by 

parallelizability
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More than half of cores 
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INTRO: BACK TO HW SPECIALIZATION

• HW specialization can provide very efficient and high-performance computation:

just do few tasks, but extremely well

• BUT, the mere availability of these devices is not enough:

• developing an application for a specific HW-accelerator involves specific expertise

• high development costs and time that can block the adoption of these technologies.

• Network programmability may come to the rescue and play an active role: 

• not only in the typical network-related routines

• but also in the computation of some simple (yet meaningful) upper layer functions

Bianchi, G., Faltelli, M., Bruschi, V. “Back to the Future: Towards Hardware Netputing Architectures (position paper),” in 2020 MedComNet



INTRO: NEW HARDWARE-DRIVEN RESEARCH TREND 

• Born from the lessons learned in SDN and NFV

• Data plane relies on domain-specific packet processing HW platforms or chipsets

• to offload network functions to the 

Network Interface Card (NIC)

• to exploit HW-compliant programmable abstraction

• e.g. the “PISA” chip (Protocol Independent Switch 

Architecture) along with the P4 language.

Load-Balancer

Monitor-Probe

Firewall
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PHD GOALS

Main goal: 

1. With a low-level strategy: Platforms for Networking

• Propose a programming abstraction able to program the hardware level 

for the execution of stateful network functionalities at high speed. 

• Validate the proposed abstraction in different use cases and scenarios.

2. With a high-level strategy: Data structure and Algorithms for 

Networking

• Design and implement ad hoc solutions tailored to a specific use case 

to improve performance and efficiency.

• Validate the approach through two fundamental Network Functions: 

packet classification and network monitoring by per flow distinct 

counting.
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PLATFORMS FOR NETWORKING
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STATEFUL FLOW PROCESSING CHALLENGE

• Typical stateless data plane:

• requires the intervention of the 

controller for any change of the 

forwarding decision

• A stateful strategy refers to: 

• keep and manipulate persistent states 

locally

• significantly reduce the interaction 

between switches and the controller 

• self-adapt the forwarding behavior 

according to network events
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A NEW STATEFUL PROGRAMMABLE ABSTRACTION

We propose FlowBlaze, an eXtended Finite State Machine (XFSM) executor

• XFSMs appear to be very expressive as low-level abstraction

• Natural model to describe a stateful process

• Ability to specify and compute a wide (and programmable) 

class of stateful information

• Efficient storage and management of per-flow stateful 

information

• Suitable for hardware offloading

• «Code-once-port-everywhere» 

• Platform independent abstraction

• Seamless portability between SW and HW platforms 5x gain 
9
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MOBILITY MANAGEMENT TO ENSURE 
SESSION CONTINUITY DIRECTLY IN THE 

DATA PLANE

TARGETS “COMPLEX” NETWORK FUNCTIONS AND BEYOND

DATA AGGREGATION IN THE DATA PLANE 
THROUGH ONLINE MAPREDUCE TASKS 

OFFLOADING

Event handled in datapath!! update forwarding rules in 1 packet time

3 ns @ 40B x 100 Gbps || 5 ns @ 64B x 100 Gbps
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1.Implemented in a real railway operated by Ferrocarrils de la Generalitat de Catalunya as demo of the H2020 5G-PICTURE project.

2.Bruschi, V., et al., “Ensuring Session Continuity for Railways using a Stateful Programmable Dataplane,” in 2021 IEEE 5G for CAM.

3.Zou, J., Legg, P., Santiago, R., Bruschi, V., et al., “Europe’s First 5G-Ready Railway Trial Utilizing Integrated Optical Passive WDM Access and Broadband Millimeter-Wave to Deliver Multi-Gbit/s Seamless Connectivity,” in 2020 IEEE ECOC

4.Bruschi, V., et al., “Offloading Online MapReduce tasks with Stateful Programmable Data Planes,” in 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN) (pp. 17-22). IEEE.



DATA STRUCTURES & ALGORITHMS 
FOR NETWORKING
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CARDINALITY ESTIMATION: THE PROBLEM

Objective:

Find the number of distinct elements in a data stream with repeated elements.

Use case: find scan-type flows, namely flows which exhibit a large cardinality in terms of number of distinct
source/destination addresses, or in most generality packet-level identifiers (e.g. ports, header fields, etc).

Challenges:

• It must somehow “remember” the observed elements for duplicate removal

• while measuring a flow size only needs a counter

Even more challenging if used to estimate top-k flows:

• Using an HyperLogLog for each source to monitor requires a huge amount of memory

• Standard methods used for top-k selection do not work in the case of cardinality estimation



FLOWFIGHT: TOP-𝑘 CARDINALITY ESTIMATION

• Cardinality estimator: HyperLogLog sketch

• We restrict the available HLLs to a number slightly 

higher than k

• Top-K Data structure inspired by Stream Summary

• cheaply updates the HLL sketch for monitored 

• easily identifies the flow with the lowest cardinality 

to kick out

• A rough estimation of the cardinality is performed 

for each flow

• Randomized Access Policy (RAP)

• we propose an innovative randomized access policy based on a “fight” between flows.

Bruschi, V., Pontarelli, S., Tollet, J., Barach, D., Bianchi, G. “FlowFight: High performance-low memory top-k spreader detection,” in Elsevier Computer Networks



EXPERIMENTAL EVALUATIONS 
IN ACTUAL NETWORK DEPLOYMENTS
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• Algorithm validation in actual network deployment: 

• Implemented in a software router VPP

• SpreadSketch, state-of-the-art for top-k spreaders 

detection

• two configurations according to its memory 

occupancy

• 4 x 512 = 110 KB (as FlowFight)

• 4 x 4096 = 1.1 MB



FLOWFIGHT VS SPREADSKETCH
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• Algorithm validation in actual network deployment: 

• Implemented in a software router VPP

• SpreadSketch, state-of-the-art for top-k spreaders 

detection

• two configurations according to its memory 

occupancy

• 4 x 512 = 110 KB (as FlowFight)

• 4 x 4096 = 1.1 MB

• FlowFight uses 10x times less memory

• FlowFight achieves higher throughput



CONCLUSIONS

• Two strategies to close the gap:

• HW specialization can provide very efficient and high-performance computation

• Defining (domain-specific) programming abstractions could bring a critical boost in the DSAs 

deployment 

• Ad-hoc solutions (sketches, data structures and algorithms) to improve performance and 

resource efficiency

• We hope that the combination of the proposed strategies can lay the foundation for a new model 

• For both packet processing as well as application-level acceleration

• Exploiting the significant throughput and latency improvements provided by Network 

Programmability innovations

• While reducing the power dissipation of future cloud deployments
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THANKS!
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