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Introduction



Deep learning techniques achieve state-of-the-art results in semantic segmentation tasks

▪ Very high per-pixel accuracies

▪ Efficient reproduction of the shapes of the objects segmented

▪ Among the most successful architectures are the FCNs (fully convolutional networks)

▪ However, to attain high performances they need big datasets of spatially exhaustive ground truths 

▪ Only available in benchmark datasets, not in real applications

▪ Require the involvement of expensive human experts for labeling

▪ Often computationally demanding 

Semantic segmentation of remote sensing images with deep learning 

Introduction
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Probabilistic graphical models (PGMs) have the ability to produce structured predictions 

▪ Exploitation of contextual (spatial) information

▪ Markov models postulated on planar or multilayer graphs (quadtrees) are known as flexible and powerful 

stochastic models for spatial information

▪ For MRF, Markovianity is formulated with respect to a neighborhood of each node of the related graph

▪ Hierarchical MRFs captures multiresolution relations (multiscale spatial information) but does not model the spatial 

context within each pixel grid

▪ Markov mesh random fields (MMRFs) describes spatial interactions among the pixels (single resolution)

Potential of probabilistic graphical models in semantic segmentation
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Development of a novel semantic segmentation method for VHR remote sensing images 

combining the advantages of deep learning techniques and PGMs

▪ Exploit the information contained at different image scales in the network activations

▪ Integrate deep learning solutions with probabilistic graphical models

▪ To achieve accurate performances with lower requirements in terms of quality and quantity of ground 

truth maps

Objectives
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Proposed method



The proposed method for semantic segmentation 
involves the use of 

▪ FCNs (U-Net or SegNet)

▪ Hierarchical causal Markov model

▪ Random forest (RF) ensemble

Objective: exploit the multiscale behavior of FCNs

The FCN is trained with a dataset of VHR images

▪ its activations at 𝐿 different blocks (i.e., different 
spatial resolutions) are inserted in a quadtree
(level 1 to 𝐿-1) with the channels of the original 
image in level 0
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Overview of the proposed method

Overall architecture



Feature representation extracted through the 
network activations is fed to the PGM

▪ Hierarchical causal Markov random field on the 
quadtree and spatial Markov chain (jointly)

▪ A pixel scan that combines both a zig-zag 
trajectory and a Hilbert space-filling curve is 
used to account for the dependencies within 
pixels, both inter-scale and intra-scale

Sample-wise posteriors are necessary to 
incorporate network activations into the PGM

▪ The quadtree is used to train the RF classifier

▪ To obtain the pixelwise posterior probabilities 
used for the inference equations of the model
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Overview of the proposed method

Overall architecture



Two different FCNs were adopted

▪ U-Net and SegNet

These networks do not contain any dense layer

▪ Encoder-decoder architecture
▪ The encoder performs the downsampling
▪ The decoder addresses the upsampling and the 

classification

▪ Semantic segmentation that can yield outputs 
with the same size of the input

▪ 3 skip connections collect the activations of the 
network at three different resolutions

▪ 128 × 128, 64 × 64, 32 × 32 pixels
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Deep learning architecture

b) SegNet

a) U-Net



▪ Causal

▪ Efficient non-iterative inference

▪ Does not model spatial 
information within each scale

▪ Models spatial information

▪ Generally non-causal

▪ Markovianity between scales 
and within each layer

▪ Multiresolution fusion through 
quadtree topology

Hierarchical MRF on 
quadtrees Planar MRF In the proposed method
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Probabilistic graphical model



Markovianity of labels across scales and in each layer

𝑃 𝒳𝑙|𝒳𝑙−1, 𝒳𝑙−2, … ,𝒳0 = 𝑃 𝒳𝑙|𝒳𝑙−1 ∝ෑ

𝑠∈𝑆𝑙

𝑃 𝑥𝑠|𝑥𝑟 , 𝑟 ≾ 𝑠 𝑃 𝑥𝑠|𝑥𝑠−

𝑃 𝒳0 = ෑ

𝑠∈𝑆0

𝑃 𝑥𝑠|𝑥𝑟, 𝑟 ≾ 𝑠

▪ A neighborhood relation is assumed in the pixel grid: 𝑟 ≾ 𝑠
indicates that 𝑟 is a causal neighbor of 𝑠

▪ The relation ≾ is defined by a 1D scan of each layer of the 
quadtree → Markov chain (combination of zig-zag and Hilbert 
curve scans)

▪ 𝒳0 is a causal MRF on the root lattice 𝑆0

▪ Conditional independence of feature vectors given the labels
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Hierarchical Markov PGM: properties



13

Hierarchical Markov PGM: MPM formulation

The whole hierarchical PGM is causal → Marginal posterior mode (MPM) for inference.
Under some assumptions

𝑃 𝑥𝑠 =

𝑥𝑠−

𝑃 𝑥𝑠|𝑥𝑠− 𝑃 𝑥𝑠−

𝑃 𝑥𝑠|𝑦𝑠
𝑑 ∝ 𝑃(𝑥𝑠|𝑦𝑠)ෑ

𝑡∈𝑠+



𝑥𝑡

𝑃(𝑥𝑡|𝑦𝑡
𝑑)𝑃(𝑥𝑡|𝑥𝑠)

𝑃(𝑥𝑡)

𝑃 𝑥𝑠 𝑥𝑠
𝑐 , 𝑦𝑠

𝑑 ∝
𝑃 𝑥𝑠|𝑦𝑠

𝑑 𝑃 𝑥𝑠|𝑥𝑠− 𝑃(𝑥𝑠−)

𝑃 𝑥𝑠
𝑛𝑠

ෑ

𝑟≾𝑠

𝑃 𝑥𝑠 𝑥𝑟 𝑃 𝑥𝑟

𝑃 𝑥𝑠 𝒴) =

𝑥𝑠
𝑐

𝑃(𝑥𝑠|𝑥𝑠
𝑐 , 𝑦𝑠

𝑑)𝑃(𝑥𝑠−|𝒴)ෑ

𝑟≾𝑠

𝑃 𝑥𝑟 𝒴



Experimental Results



ISPRS 2D Semantic Labelling Challenge Vaihingen 
Dataset

▪ VHR aerial images with a resolution of 9 cm/pixel

▪ Ideal dataset, with dense, spatially exhaustive, 
pixel-level ground truths

▪ Six classes: buildings, impervious surfaces (e.g., 
roads), low vegetation, trees, cars, and clutter

▪ Red, green, and near-infrared channels and 
digital surface model (DSM)

▪ 33 image tiles of approximately 2100 × 2100 pixels

▪ 16 ground truth images: 12 used for training and 4 
for testing
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Dataset 

a) True orthophoto

b) Ground truth
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Experimental setup

Posterior probabilities with the different 
techniques

Several training conditions were considered

▪ Full ground truth

▪ “Deteriorated” ground truth with a percentage of 
unlabeled pixels (either randomly or in blocks)

▪ Ground truth modified by morphological 
operators

▪ Erosion and dilation

▪ These degradations are aimed at approaching 
real-world cases of limited and non-exhaustive 
ground truths

And several formulations

▪ Focusing on the posterior probabilities of the base 
of the quadtree
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Results with a standard U-Net

Results obtained with the full 
dataset

Confusion matrices
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Results with a standard U-Net

Table of overall
accuracy, precision, 
and recall

Table of Cohen’s
kappa coefficient
and F1 score
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Results with 70% of unlabeled pixels in blocks

Results obtained with the 70% 
of unlabeled pixels

Confusion matrices
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Results with 70% of unlabeled pixels in blocks

Table of overall
accuracy, precision, 
and recall

Table of Cohen’s
kappa coefficient
and F1 score
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Results with the erosion morphological operator

Results obtained with the eroded 
dataset

Highlight of the eroded parts

Confusion matrices
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Results with the erosion morphological operator

Table of overall
accuracy, precision, 
and recall

Table of Cohen’s
kappa coefficient
and F1 score



▪ Novel method for semantic segmentation of remote sensing images mixing FCNs and 

hierarchical PGMs

▪ Surpasses the accuracy as per the recall of the standard FCNs studied

▪ Outperforms the state-of-the-art in the classification of minority classes, while maintaining adequate 

classification results for all classes

▪ Advantages are progressively more relevant as the training set is farther from the ideal densely-labeled case 

▪ Perspectives for future work

▪ Addition of feedforward neural networks to compute the pixelwise posterior probabilites to replace RF

▪ Mix directly deep learning and PGMs without the addition of another classifier

▪ Test the proposed method with another dataset

▪ Same encoding of the classes but different complexity and features

▪ Test with data associated with other applications

▪ Natural disasters management (e.g., earthquakes, landslides, floods, etc.)

Conclusion and future work

23



Thank you for your attention!


