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ABSTRACT

The problem of robust radar detection is addressed from a ma-
chine learning inspired perspective. In particular, a novel in-
terpretation of the well-known Kelly’s and adaptive matched
filter (AMF) detectors is provided in terms of decision region
boundaries in a suitable feature space. Then, a new detec-
tor based on a feature vector that combines the two detec-
tion statistics is obtained by exploiting the k-nearest neigh-
bors (KNN) approach. The resulting receiver possesses the
constant false alarm rate (CFAR) property and can achieve
the same benchmark performance of Kelly’s detector under
matched conditions while being almost as robust as the AMF
(which instead experiences a loss under matched conditions).

Index Terms— KNN, robust detection, CFAR property

1. INTRODUCTION

The problem of radar detection has been deeply investigated
in the last decades, mainly through statistical signal process-
ing techniques. Indeed, the detection of a coherent return from
a given cell under test (CUT) in range, doppler, and azimuth,
can be formulated as the hypothesis testing problem

⇢
H0 : z = n
H1 : z = ↵v + n

(1)

where z 2 CN⇥1, n 2 CN⇥1, and v 2 CN⇥1 denote the re-
ceived vector, corresponding noise term, and known steering
vector. In general N is the number of processed samples from
the CUT; it might be the number of antenna array elements
times the number of pulses. The noise is commonly modeled
as a complex normal with zero mean and unknown (Hermi-
tian) positive definite matrix C, i.e., n ⇠ CNN (0,C).

In his pioneering paper [1], Kelly derived the generalized
likelihood ratio test (GLRT) based on the primary data z from
the CUT and a set of secondary (training) data r1, . . . , rK ;
such data are supposed to be independent and identically dis-
tributed random vectors, free of signal components, and shar-
ing with the CUT the statistical characteristics of the noise.
In [2] the performance of such a detector is assessed when
the actual steering vector is not aligned with the nominal one.

Later, many works have addressed the problem of enhancing
either the selectivity or the robustness of GLRT-based detec-
tors to mismatches, obtaining a number of different detectors.
In particular, the adaptive matched filter (AMF) [3] is a promi-
nent example of robust detector, while Kelly’s detector is a
selective receiver, i.e., it tends to reject signals arriving from
directions different from the nominal one (v).

Recently, the possibility to bring tools from machine
learning to radar contexts has started to be investigated. For
instance, the use of support vector machines (SVM) has been
proposed in [4, 5] for radar detection. Notably, SVM-based
approaches are showing their effectiveness also for detection
problems outside the radar domain, namely spectrum sensing
[6, 7, 8]. In our preliminary work [9], the k-nearest neighbors
(KNN) approach has been proposed for the detection of radar
signals in non-Gaussian noise, using modified statistics from
well-known receivers; however, the obtained detector does
not possess the constant false alarm rate (CFAR) property,
though its probability of false alarm (Pfa) is not very sen-
sitive to the actual distribution of the unknown disturbance
(clutter plus thermal noise).

In this paper, we investigate the potential of the KNN ap-
proach to obtain a robust CFAR detector for radar signals
in Gaussian noise with unknown spectral characteristics. In
particular, we first provide a novel interpretation of the well-
known Kelly’s and adaptive matched filter (AMF) detectors
in terms of decision region boundaries in a suitable feature
space. Then, we combine such two statistics to build a feature
vector to be fed to a KNN decision rule, so as to obtain a new
detector with enhanced characteristics. Remarkably, the re-
sulting receiver possesses the CFAR property and can achieve
the same benchmark performance of Kelly’s detector under
matched conditions; moreover, while Kelly’s detector has a
selective behavior, the proposed KNN-based one is almost as
robust as the AMF, the latter however experiencing a perfor-
mance loss under matched conditions.

Compared to more complex approaches that are currently
under investigation, in particular deep learning [10, 11, 12],
KNN is likely the simplest machine learning algorithm for
classification, since it basically performs computation of dis-
tances with respect to a training set, followed by a count-
based decision rule (e.g., majority); by contrast, even SVM

• Kelly’s pioneering work: one-step and two-step 
generalized likelihood ra-o tests (GLRTs)

(which is certainly much less complex than deep learning) re-
quires to numerically solve an optimization problem to obtain
the decision rule. The proposed approach is therefore very ap-
pealing for applications, and numerical results indeed show
that its decision region boundary takes the best from both
Kelly’s and AMF, without sacrificing the CFAR property.

2. A NOVEL INTERPRETATION OF KELLY’S AND
AMF DETECTORS

2.1. Background

In this work, ↵ is regarded as a deterministic unknown param-
eter, linked to the signal-to-noise ratio (SNR) � through

� = |↵|2pHC�1p 2 R+ (2)

where H is the conjugate transpose (Hermitian), (·)�1 is the
inverse operator, | · | is the modulus of the argument variable,
and p is a steering vector whose mismatch with respect to the
nominal steering v can be quantified in terms of the cosine
squared of the angle ✓ between p and v in the whitened space

cos2 ✓ =
|pHC�1v|2

vHC�1v pHC�1p
2 [0, 1]. (3)

Under matched conditions, of course, p = v and cos2 ✓ = 1.
We recall that Kelly’s detector is given by

tKelly =
|zHS�1v|2

vHS�1v (1 + zHS�1z)

H1
>


H0

⌘Kelly (4)

where S is K times the sample covariance matrix based on
secondary data, namely S =

P
K

i=1 rir
H

i
, while the AMF is

tAMF =
|zHS�1v|2

vHS�1v

H1
>


H0

⌘AMF. (5)

As known, the detection test consists in comparing the statis-
tic of a chosen detector with a threshold ⌘, for a preassigned
value of the probability of false alarm (Pfa).

For the analysis, we resort to a convenient reparameteri-
zation in terms of two equivalent statistics. Specifically, AMF
and Kelly’s statistics in eqs. (4)-(5) can be rewritten as as

tAMF =
t̃

�
, tKelly =

t̃

1 + t̃
(6)

with t̃ = tKelly
1�tKelly

and � = 1

1+zHS�1z� |zHS�1v|2
vHS�1v

. The joint

statistical distribution of t̃ and � is known: t̃ given � is ruled
by a complex noncentral F-distribution with 1 and K �N +
1 complex degrees of freedom and noncentrality parameter

�� cos2 ✓, while � is ruled by a complex noncentral Beta dis-
tribution with K � N + 2 and N � 1 complex degrees of
freedom and noncentrality parameter �(1� cos2 ✓) [13]. No-
tice that this characterization, parameterized in � and cos2 ✓,
encompasses the ones under H0 (for � = 0, i.e., SNR = �1
dB) and H1 under matched conditions (for cos2 ✓ = 1).

The statistical characterization in terms of t̃ and � has
been exploited in the literature to derive analytical formulae
for the performance of Kelly’s and AMF detectors. In partic-
ular, the Pfa of Kelly’s detector can be evaluated as

P [tKelly > ⌘Kelly|H0] = P [t̃ > ⌘̃|H0] =
1

(1 + ⌘̃)K�N+1
(7)

where ⌘̃ = ⌘Kelly/(1� ⌘Kelly). Similarly, the Pfa of the AMF is

P [tAMF > ⌘AMF|H0]

=
K!

(K �N + 1)!(N � 2)!

Z 1

0

y
K�N+1(1� y)N�2

(1 + ⌘AMFy)K�N+1
dy.

(8)

From (7)-(8), it is evident that the Pfas of both Kelly’s and
AMF detectors do not depend on any unknown parameter,
hence they possess the CFAR property. Such a property is
very important in practice since it ensures that the detection
threshold can be set to achieve a desired Pfa (by inverting
(7) or (8)), irrespective of the clutter statistics. Analogous ex-
pressions can be obtained for the Pds by integrating the dis-
tributions of t̃ and � under the H1 hypothesis (here omitted
for brevity, see [13] for more details). It is worth remarking
that the performance of Kelly’s and AMF in terms of Pd only
depends on the SNR � and mismatch level cos2 ✓.

2.2. Detector representation in feature space

We propose a novel way to analyze Kelly’s and AMF detec-
tors that leverages the fact that their statistics depend only on
t̃ and �. The idea is to represent the curves t̃ = ⌘̃ (equiva-
lent to tKelly = ⌘Kelly) and tAMF = ⌘AMF in the �-t̃ plane. This is
tantamount to considering a feature space where such curves
correspond to the decision region boundaries discriminating
between the hypotheses H0 and H1. Data in this space can be
then visualized as points belonging to either H0 or H1 under
both matched and mismatched conditions, as shown in Fig.
1, which reports 500 points for each of four different condi-
tions, displayed with varying colors and markers (bounding
boxes have been manually drawn to better highlight the rough
extent of each cluster, including about 95% of the points); we
assume v = [1 ei2⇡fd · · · ei2⇡(N�1)fd ]T , N = 16, K = 32,
normalized Doppler frequency fd = 0.08, p defined as v but
with fd + �f and �f 2 {0, 0.2/N, 0.3/N} (corresponding to1

1The noise affects the performance only through � and cos2 ✓, hence the
shape of C is not important. The figures have been produced by assuming
for C the sum of a Gaussian-shaped clutter and white (thermal) noise 10 dB
weaker, with one-lag correlation coefficient of the clutter equal to 0.95.
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Radar Detec.on under the lens of Machine Learning

{
H0 : x ∼ D0

H1 : x ∼ D1

• intui-ve interpreta-on using general concepts from machine learning (data clusters, decision
region boundary, classifiers,…) 

Primary + secondary
CUT data

input feature extrac%on

map to feature vector

classifica%on

two-class problem
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KNN-based Radar Detec.on

• K-Nearest Neighbors (KNN): simplest ML algorithm for classifica7on, easily interpretable

model is NOT learned (KNN is non-parametric, and it does not make
any assump7on about the sta7s7cal distribu7on of training data)

ü Avoid data collec7on (problem of 
data scarcity)

ü Not limited to "seen" data

ü Decouple detec7on capability of 
the algorithm from the advantage
of a real dataset

combine model-based & data driven

KNN Workflow

Input data from CUT
Feature vector x

3

Fig. 1: Block scheme of the proposed KNN-based detector.

Let ti = [x>
i
`i]> be the generic element of the training set

T (with `i either 0 if ti 2 T0 or 1 if ti 2 T1, respectively);
for a given x under test, the KNN decision is obtained as

¯̀=
1

k

X

{i:xi2Nk(x)}

`i

H1
>


H0

⌘ (9)

where Nk denotes the set of the k vectors xis closest to x
according to the Euclidean distance and ⌘ is the detection
threshold chosen on the basis of a desired probability of false
alarm (Pfa). The proposed procedure is summarized in the
block scheme depicted in Fig. 1. Some comments are now
in order. First, we observe that since ` is a discrete RV,
different choices of ⌘ do not necessarily lead to different
Pfas (for a deterministic test). Furthermore, it is worth noting
that the proposed detector does not strictly possess the CFAR
property, being the distribution of ` under the null hypothesis
dependent on the covariance matrix of the disturbance (i.e.,
clutter plus thermal noise) as well as on the shape parameter
⌫. However, we will show that the proposed detector is quite
robust to actual clutter “spikyness” and to the actual C,
possibly different from the assumed design values ⌫DES and
CDES.

IV. PERFORMANCE EVALUATION AND RESULTS

In this section, we assess the performance of the proposed
KNN-based detector both on simulated data as well as on
real radar recordings collected by the McMaster IPIX radar in
Grimsby, on the shore of Lake Ontario, in the winter of 1998;
the database used for the analysis is available at [28].

A. Analysis on Simulated Data

We assume N = 8, K = 16, and generate a synthetic
dataset T containing NT0 = NT1 = 103 training data for
each hypothesis. Under H1, the data are generated assuming
a normalized Doppler frequency fdT = 0.08 and a value of
SCRDES = 20 dB. As to CDES, we set ⌦s = 0 and �f = 0.051
in (5), thus obtaining a Gaussian-shaped matrix with one-lag
correlation coefficient ⇢DES = 0.95. Finally, we consider ⌫DES =
0.42 while the power of the thermal noise is set according to
a CNRDES = 10 dB, a value such that the resulting scenario
is not clutter-dominated. The KNN procedure is implemented

SCR [dB]
0 5 10 15 20 25 30

P
d

0

0.2

0.4

0.6

0.8

1

Proposed KNN

Σ-ANMF

RP-ANMF

Fig. 2: Pd vs SCR for Gaussian-shaped C with ⇢ = 0.95.

assuming k = 50 and setting ⌘ = 1/2, that is, the KNN-based
detector decides for either H0 or H1 based on the majority
rule. As concerns the Pfa, it is estimated by averaging the
results obtained from 103 different realizations of the training
set T , and for each realization of T the estimate is computed
over 105 independent trials. Similarly, the Pd is estimated by
averaging the results over 103 training sets T , and for each T
the estimate is computed over 104 trials.

Given the specific processing adopted in (4), we identified
in the ⌃-ANMF detector one of the most natural competitor
of our proposed approach, since it also considers a ”whitened”
version of z through Sn in its detection statistic as

t⌃�ANMF(z,Sn) =
|zHS�1

n
v|2

vHS�1
n v zHS�1

n z
. (10)

For the sake of comparison, we also consider the RP-ANMF
detector, whose statistic is obtained by replacing Sn in (10)
with the recursively estimated matrix proposed in [29]. The
thresholds for both the ⌃-ANMF and RP-ANMF detectors are
set to guarantee the same Pfa of the KNN algorithm.

We start the analysis by considering the case in which the
actual parameters used to generate the data under test are
matched to the design parameters (C = CDES, ⌫ = ⌫DES, and
CNR = CNRDES). For the chosen setup, the proposed KNN-
based detector exhibits a Pfa = 5.1 ·10�3. In Fig. 2 we report
the performance of the KNN approach in terms of Pd as a
function of the SCR, also in comparison with the ⌃-ANMF
and RP-ANMF detectors. Remarkably, the proposed KNN-
based detector significantly outperforms both the competitors,
especially for low SCRs: indeed, the ⌃-ANMF, which is more
powerful than the RP-ANMF, requires about 6 dB of SCR to
achieve the same Pd of the KNN detector.

To evaluate the sensitivity of the Pfa to mismatches on
the shape parameter of the actual clutter, we carried out an
analysis in which ⌫DES = 0.42 while the actual value is either
half or twice the assumed ⌫DES, that is, ⌫ = 0.21 or ⌫ = 0.84.
As for the remaining parameters, they are the same as in
Fig. 2. The resulting Pfa as a function of ⌫ is showed in
Fig. 3. As it can be seen, the curve of the proposed KNN-
based detector is almost flat, meaning that it is quite insensitive
to a misknowledge of ⌫, despite it does not strictly possess
the CFAR property. The same is true for the RP-ANMF,
that though exhibits inferior performance in terms of Pd (see

Either 0 or 1

Pseudorandom genera,on of dataset
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KNN-based Detectors: Theore.cal Characteriza.on

• KNN can be theore-cally characterized (not usual for ML approaches)



A. Fascista, “K-Nearest Neighbors: A Powerful Tool to Design Radar Detectors”, GTTI Workshop “ML per i sistemi Radar e di Telerilevamento” 5

KNN-based Adap.ve Detec.on in Gaussian Noise

First approach: use as feature vector x the “whitened data” under test x = S−1/2z
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First KNN Approach: Analysis on real IPIX data

• Under 𝐻! we add a synthe;c target with normalized Doppler frequency 80 Hz (target embedded in deep cluFer)

from: A. De Maio, G. Foglia, E. Conte 
and A. Farina, "CFAR behavior of 
adap>ve detectors: an experimental
analysis," IEEE Transac>ons on 
Aerospace and Electronic Systems, 
vol. 41, no. 1, pp. 233-251, Jan. 2005
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Second Approach: KNN with well-known radar sta.s.cs

• Second approach: use as feature vector x a set of well-known radar sta-s-cs sharing a 
common dependency on the maximal invariant sta-s-cs

x =
[
d1t̃b[1] d2t̃b[2] · · · dmt̃b[m]

]T

with b[j] = fj(β), j = 1, . . . ,m,

(which is certainly much less complex than deep learning) re-
quires to numerically solve an optimization problem to obtain
the decision rule. The proposed approach is therefore very ap-
pealing for applications, and numerical results indeed show
that its decision region boundary takes the best from both
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, tKelly =

t̃

1 + t̃
(6)

with t̃ = tKelly
1�tKelly

and � = 1

1+zHS�1z� |zHS�1v|2
vHS�1v

. The joint

statistical distribution of t̃ and � is known: t̃ given � is ruled
by a complex noncentral F-distribution with 1 and K �N +
1 complex degrees of freedom and noncentrality parameter

�� cos2 ✓, while � is ruled by a complex noncentral Beta dis-
tribution with K � N + 2 and N � 1 complex degrees of
freedom and noncentrality parameter �(1� cos2 ✓) [13]. No-
tice that this characterization, parameterized in � and cos2 ✓,
encompasses the ones under H0 (for � = 0, i.e., SNR = �1
dB) and H1 under matched conditions (for cos2 ✓ = 1).

The statistical characterization in terms of t̃ and � has
been exploited in the literature to derive analytical formulae
for the performance of Kelly’s and AMF detectors. In partic-
ular, the Pfa of Kelly’s detector can be evaluated as

P [tKelly > ⌘Kelly|H0] = P [t̃ > ⌘̃|H0] =
1

(1 + ⌘̃)K�N+1
(7)

where ⌘̃ = ⌘Kelly/(1� ⌘Kelly). Similarly, the Pfa of the AMF is

P [tAMF > ⌘AMF|H0]

=
K!

(K �N + 1)!(N � 2)!

Z 1

0

y
K�N+1(1� y)N�2

(1 + ⌘AMFy)K�N+1
dy.

(8)

From (7)-(8), it is evident that the Pfas of both Kelly’s and
AMF detectors do not depend on any unknown parameter,
hence they possess the CFAR property. Such a property is
very important in practice since it ensures that the detection
threshold can be set to achieve a desired Pfa (by inverting
(7) or (8)), irrespective of the clutter statistics. Analogous ex-
pressions can be obtained for the Pds by integrating the dis-
tributions of t̃ and � under the H1 hypothesis (here omitted
for brevity, see [13] for more details). It is worth remarking
that the performance of Kelly’s and AMF in terms of Pd only
depends on the SNR � and mismatch level cos2 ✓.

2.2. Detector representation in feature space

We propose a novel way to analyze Kelly’s and AMF detec-
tors that leverages the fact that their statistics depend only on
t̃ and �. The idea is to represent the curves t̃ = ⌘̃ (equiva-
lent to tKelly = ⌘Kelly) and tAMF = ⌘AMF in the �-t̃ plane. This is
tantamount to considering a feature space where such curves
correspond to the decision region boundaries discriminating
between the hypotheses H0 and H1. Data in this space can be
then visualized as points belonging to either H0 or H1 under
both matched and mismatched conditions, as shown in Fig.
1, which reports 500 points for each of four different condi-
tions, displayed with varying colors and markers (bounding
boxes have been manually drawn to better highlight the rough
extent of each cluster, including about 95% of the points); we
assume v = [1 ei2⇡fd · · · ei2⇡(N�1)fd ]T , N = 16, K = 32,
normalized Doppler frequency fd = 0.08, p defined as v but
with fd + �f and �f 2 {0, 0.2/N, 0.3/N} (corresponding to1

1The noise affects the performance only through � and cos2 ✓, hence the
shape of C is not important. The figures have been produced by assuming
for C the sum of a Gaussian-shaped clutter and white (thermal) noise 10 dB
weaker, with one-lag correlation coefficient of the clutter equal to 0.95.

Ø AMF detector more inclined to decide for H1 also in presence
of mismatches thanks to its positive slope (robust behavior)

Ø horizontal line of Kelly’s detector can effectively separate H0
from H1 under matched conditions (selective behavior)
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Second Approach: An Example
• Example: use a 2D feature vector with Kelly and AMF sta-s-cs

Fig. 1: Radar detection represented in the �-t̃ feature space.
Red crosses, black triangles and cyan squares represent data
points for different values of mismatch (at the same SNR).
Grey dots indicate H0 data.

cos2 ✓ = 1, cos2 ✓ = 0.83, and cos2 ✓ = 0.65, respectively),
� = 15 dB, Pfa = 10�4.

Interestingly, the observed data under H0 tend to accu-
mulate forming a separated cluster from the point data under
H1; moreover, according to the level of mismatch (measured
by cos2 ✓) the cluster under H1 changes. These facts enable
a more intuitive interpretation of the detectors, which can
be seen as classifiers operating in a two-dimensional fea-
ture space. In this respect, we can observe that both Kelly’s
and AMF detectors behave as linear classifiers in the con-
sidered �-t̃ plane. Notice that the crossing point between
the two curves can be easily obtained by solving the system⇢

t̃ = ⌘̃

t̃ = �⌘AMF
, which returns � = ⌘̃/⌘AMF; for the case in the

figure, using eq. (7) we get ⌘Kelly ⇡ 0.41 hence ⌘̃ ⇡ 0.69, while
from eq. (8) we get ⌘AMF ⇡ 1.48 and finally ⌘̃/⌘AMF ⇡ 0.46,
which is in perfect agreement with the simulation.

On the other hand, this representation clearly shows that,
in case robustness is of interest, the decision region boundary
should separate the H0 cluster from the union of the matched
and mismatched H1 clusters. In light of this consideration,
an intuitive interpretation of the robust behavior of the AMF
is that the positive slope makes the detector more inclined to
decide for H1 also in presence of mismatched data, while the
horizontal line of Kellys detector can effectively separate the
H0 cluster from the H1 cluster under matched conditions. No-
tice that both the detectors are guaranteeing the CFAR prop-
erty and the same Pfa (since thresholds are set consistently).

From Fig. 1, we can also highlight some interesting prop-
erties about the position of the data clusters in the considered
feature space. First, notice that the center of the H1 cluster
under matched conditions has the same abscissa of the center
of the H0 cluster, i.e., they lie on the same vertical line (par-

allel to the ordinate axis). This can be explained by observing
that the statistical distribution of � is the same central Beta
under both H0 and H1 (under matched conditions) hypothe-
ses. On the other hand, the ordinate (t̃) of the H1 cluster tends
to increase as the SNR � increases, reflecting the change in
the distribution of the t̃ statistic from a central (under H0)
to a noncentral (under H1) F-distribution. Conversely, un-
der mismatched conditions, both abscissa and ordinate of the
H1 cluster change in a more complex way, resulting in mis-
matched H1 clusters (in Fig. 1 two examples are shown in
black and cyan, with triangle and square markers).

The representation in the feature space proposed so far en-
ables a more intuitive interpretation of the detection problem
under matched/mismatched conditions using general con-
cepts adopted in machine learning based classification (data
clusters, decision region boundary, and linear classifiers).
Thus, it is interesting to look at how it behaves a detector
obtained by resorting to some well-known machine learning
classification approach. In the sequel, we assess the potential
of choosing between H0 and H1 based on a KNN rule.

3. PROPOSED KNN-BASED DETECTOR

In this section, we demonstrate that KNN-based decision
schemes can be fruitfully applied to design novel radar de-
tectors in the feature space �-t̃. To this aim, we consider
as input data the vector obtained by stacking both primary
and secondary data, say o = [zT rT1 · · · rT

K
]T , where T

denotes transposition, to be mapped into a lower dimen-
sional feature vector. To come up with a CFAR detector, we
propose to use a vector of features obtained by combining
the statistics of Kelly’s and AMF detectors. More specifi-
cally, since both detectors can be rewritten so as to exhibit
a dependency on t̃ and �, they can be conveniently stacked
to construct a two-dimensional feature vector x having the

structure x =

"
d1t̃

d2
t̃

�

#
with d1 and d2 arbitrary (nonnega-

tive) parameters that can be used to steer the performance of
the resulting detector, as better explained later.

To derive the KNN classifier, we need a training set con-
taining representative examples of the observed data under
both H0 and H1 hypotheses. Without loss of generality, we
assume that NT independent observations of the raw data
o under both H0 and H1 are available (clearly, they can be
easily obtained through a random number generator). Ac-
cordingly, we have the training set T = T 0 [ T 1 with T 0 =⇢
t0
i
=


x0
i

0

�
2 R3⇥1

, i = 1, . . . , NT

�
obtained from data

under H0, and T 1 =

⇢
t1
i
=


x1
i

1

�
2 R3⇥1

, i = 1, . . . , NT

�

obtained from data under H1. To implement the KNN-based
decision rule, we associate to a given input data under test
o the corresponding feature vector x; more precisely, de-

with 𝑑# and 𝑑$ arbitrary (nonnega7ve) tuning parameters

• Interpreta-on in the feature space
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Fig. 2: Performance comparison as Pd vs SNR.

noting by ti =


xi

`i

�
, i = 1, . . . , 2NT , the elements of T

(the “label” `i is either 0 or 1 depending on the fact that ti
belongs to T 0 or T 1, respectively), we compute the statistic

` =
1

k

X

{i: xi2Nk(x)}

`i with Nk (x) the set of the k vectors xis

closest to the test vector x in Euclidean norm (“the k nearest

neighbors of x”). Finally, the decision rule `

H1
>


H0

T selects

the hypothesis, where T is a chosen detection threshold.

4. PERFORMANCE ASSESSMENT

The performance are evaluated by means of Monte Carlo sim-
ulations, using the same settings as for Fig. 1. We syntheti-
cally generate T0 and T1 using NT = 1000 training data for
each hypothesis according to the models in (1), assuming for
H1 design parameters fd = 0.08 and SNR = 12 dB. The KNN
is implemented with k = 50 and threshold T = 1/2, i.e., the
algorithm chooses H1 if at least 26 out of 50 closest data be-
long to T1. With these parameters, we obtained Pfa = 0.0084
for the KNN detector, and the thresholds for AMF and Kellys
detectors have been set to guarantee the same Pfa. Pds are
computed based on 103 independent trials, then averaged over
1000 realizations of the training set T .

Fig. 3: Comparison among decision region boundaries.

Results under (a) matched and (b) mismatched conditions
are reported in Fig. 2. Remarkably, the proposed receiver with
d1 = 1 and d2 = 0.7 achieves the same benchmark per-
formance of Kelly’s detector under matched conditions, and
possesses the CFAR property since it is a function of CFAR
statistics. Under mismatched conditions, the proposed detec-
tor is almost as robust as the AMF, the latter however expe-
riencing some performance loss under matched conditions,
especially at lower SNR. Additional results (not reported due
to lack of space) show that the level of robustness can be ad-
justed based on the tuning of d2, while keeping the same per-
formance of Kelly’s detector under matched conditions.

Fig. 3 shows that the proposed detector is a non-linear

classifier in the feature space, and its decision region bound-
ary is a mix of Kelly’s and AMF ones: in particular, it has
a positive slope very close to the AMF’s one until approxi-
mately the crossing point � = ⌘̃/⌘AMF ⇡ 0.3214

0.6274 = 0.5122,
then bends to try to get closer to the horizontal line of Kelly’s
detector. In doing so, it can strike a balance between Kelly’s
and AMF performance, while guaranteeing the same Pfa.

5. CONCLUSION

We revisited robust radar detection under a machine learn-
ing perspective. We provided a novel interpretation of Kelly’s
and AMF detectors as linear classifiers in a suitable feature
space; then we proposed a new detector based on a feature
vector that combines their statistics, fed to a KNN rule. The
resulting receiver possesses the CFAR property and achieves
the same performance of Kelly’s detector under matched con-
ditions, while being almost as robust as the AMF. Remark-
ably, through our approach a non-linear classifier in the fea-
ture space with enhanced performance can be obtained based
on KNN, whereas Kelly’s and AMF detectors, which were
derived as GLRTs, are linear classifiers.

Ø the proposed detector is a non-linear classifier in the feature space

Ø its decision region boundary is a mix of Kelly’s and AMF ones
• it has a positive slope very close to the AMF’s one until acrossing point
• then bends to try to get closer to the horizontal line of Kelly’s detector

Ø in doing so, it can strike a balance between Kelly’s and AMF 
performance, while guaranteeing the same 𝑃!"
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Results under (a) matched and (b) mismatched conditions
are reported in Fig. 2. Remarkably, the proposed receiver with
d1 = 1 and d2 = 0.7 achieves the same benchmark per-
formance of Kelly’s detector under matched conditions, and
possesses the CFAR property since it is a function of CFAR
statistics. Under mismatched conditions, the proposed detec-
tor is almost as robust as the AMF, the latter however expe-
riencing some performance loss under matched conditions,
especially at lower SNR. Additional results (not reported due
to lack of space) show that the level of robustness can be ad-
justed based on the tuning of d2, while keeping the same per-
formance of Kelly’s detector under matched conditions.

Fig. 3 shows that the proposed detector is a non-linear

classifier in the feature space, and its decision region bound-
ary is a mix of Kelly’s and AMF ones: in particular, it has
a positive slope very close to the AMF’s one until approxi-
mately the crossing point � = ⌘̃/⌘AMF ⇡ 0.3214

0.6274 = 0.5122,
then bends to try to get closer to the horizontal line of Kelly’s
detector. In doing so, it can strike a balance between Kelly’s
and AMF performance, while guaranteeing the same Pfa.

5. CONCLUSION

We revisited robust radar detection under a machine learn-
ing perspective. We provided a novel interpretation of Kelly’s
and AMF detectors as linear classifiers in a suitable feature
space; then we proposed a new detector based on a feature
vector that combines their statistics, fed to a KNN rule. The
resulting receiver possesses the CFAR property and achieves
the same performance of Kelly’s detector under matched con-
ditions, while being almost as robust as the AMF. Remark-
ably, through our approach a non-linear classifier in the fea-
ture space with enhanced performance can be obtained based
on KNN, whereas Kelly’s and AMF detectors, which were
derived as GLRTs, are linear classifiers.
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detectors have been set to guarantee the same Pfa. Pds are
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Results under (a) matched and (b) mismatched conditions
are reported in Fig. 2. Remarkably, the proposed receiver with
d1 = 1 and d2 = 0.7 achieves the same benchmark per-
formance of Kelly’s detector under matched conditions, and
possesses the CFAR property since it is a function of CFAR
statistics. Under mismatched conditions, the proposed detec-
tor is almost as robust as the AMF, the latter however expe-
riencing some performance loss under matched conditions,
especially at lower SNR. Additional results (not reported due
to lack of space) show that the level of robustness can be ad-
justed based on the tuning of d2, while keeping the same per-
formance of Kelly’s detector under matched conditions.

Fig. 3 shows that the proposed detector is a non-linear

classifier in the feature space, and its decision region bound-
ary is a mix of Kelly’s and AMF ones: in particular, it has
a positive slope very close to the AMF’s one until approxi-
mately the crossing point � = ⌘̃/⌘AMF ⇡ 0.3214

0.6274 = 0.5122,
then bends to try to get closer to the horizontal line of Kelly’s
detector. In doing so, it can strike a balance between Kelly’s
and AMF performance, while guaranteeing the same Pfa.

5. CONCLUSION

We revisited robust radar detection under a machine learn-
ing perspective. We provided a novel interpretation of Kelly’s
and AMF detectors as linear classifiers in a suitable feature
space; then we proposed a new detector based on a feature
vector that combines their statistics, fed to a KNN rule. The
resulting receiver possesses the CFAR property and achieves
the same performance of Kelly’s detector under matched con-
ditions, while being almost as robust as the AMF. Remark-
ably, through our approach a non-linear classifier in the fea-
ture space with enhanced performance can be obtained based
on KNN, whereas Kelly’s and AMF detectors, which were
derived as GLRTs, are linear classifiers.
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KNN-based Detec.on of Coherent Targets in non-Gaussian Noise

• Data model: K-distributed clu3er + thermal noise

x = S−1/2
n

z√
1

N−1‖P⊥
v z‖2

A. Coluccia, A. Fascista, and G. Ricci, ``A KNN-based Radar Detector for Coherent Targets in non-Gaussian Noise’’, to be submi&ed to IEEE SPL
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KNN in non-Gaussian Noise: Analysis on Real IPIX Data

• Test dataset
from: E. Conte, A. De Maio and C. 
Galdi, "Sta>s>cal analysis of real
cluOer at different range
resolu>ons," in IEEE Transac>ons on 
Aerospace and Electronic Systems, 
vol. 40, no. 3, pp. 903-918, July 2004

A. Coluccia, A. Fascista, and G. Ricci, ``A KNN-based Radar Detector for Coherent Targets in non-Gaussian Noise’’, to be submi&ed to IEEE SPL
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actual 𝑃!" different from nominal one for all algorithms

• Again training data pseudorandomly generate
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Conclusions

§ classical radar detec+on revisited under a machine learning perspec+ve

§ In typical radar scenarios, data are scarce and highly heterogeneous à combine model-based & 
data driven

§ First KNN approach with raw data provides a significant gain, also on real data, but looses CFAR 
property (in prac+ce, quite robust)

§ Second KNN approach guarantees the CFAR property and allows the design of novel detectors 
with hybrid selec+ve/robust behaviors

§ ongoing work: a general framework for analysis and design of CFAR detectors in feature spaces

A. Coluccia, A. Fascista and G. Ricci, "CFAR Feature Plane: A Novel Framework for the Analysis and Design of 
Radar Detectors," in IEEE TransacDons on Signal Processing, vol. 68, pp. 3903-3916, 2020.


