

"K-Nearest Neighbors: A Powerful Tool to Design Radar Detectors"

Alessio Fascista

Dipartimento di Ingegneria dell'Innovazione Università del Salento, Lecce, IT <u>alessio.fascista@unisalento.it</u>

Classical Radar Detection

• Binary hypothesis testing problem

$$\left\{ egin{array}{ll} H_0: & oldsymbol{z} = oldsymbol{n} \ H_1: & oldsymbol{z} = lpha oldsymbol{v} + oldsymbol{n} \end{array}
ight.$$

 Kelly's pioneering work: one-step and two-step generalized likelihood ratio tests (GLRTs)

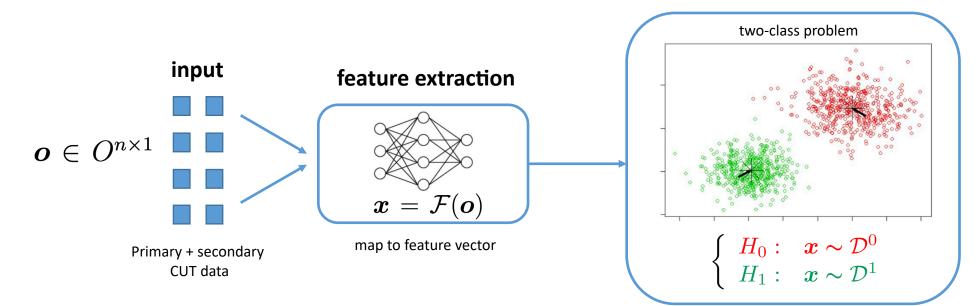
$$t_{ ext{Kelly}} = rac{|oldsymbol{z}^H oldsymbol{S}^{-1} oldsymbol{v}|^2}{oldsymbol{v}^H oldsymbol{S}^{-1} oldsymbol{v} \left(1 + oldsymbol{z}^H oldsymbol{S}^{-1} oldsymbol{z}
ight)}{H_0} \stackrel{H_1}{\stackrel{>}{}} \eta_{ ext{Kelly}}$$

General *model-based* problem formulation $egin{array}{ccc} H_0: & m{x} \sim \mathcal{D}^0 & ext{ no target} \ H_1: & m{x} \sim \mathcal{D}^1 & ext{ target} \end{array}$ Several approaches designed for different \mathcal{D}^0 and \mathcal{D}^1 to promote **Selectivity**: detect targets **Robustness**: reveal targets from a specific direction in presence of mismatches

Radar Detection under the lens of Machine Learning

2

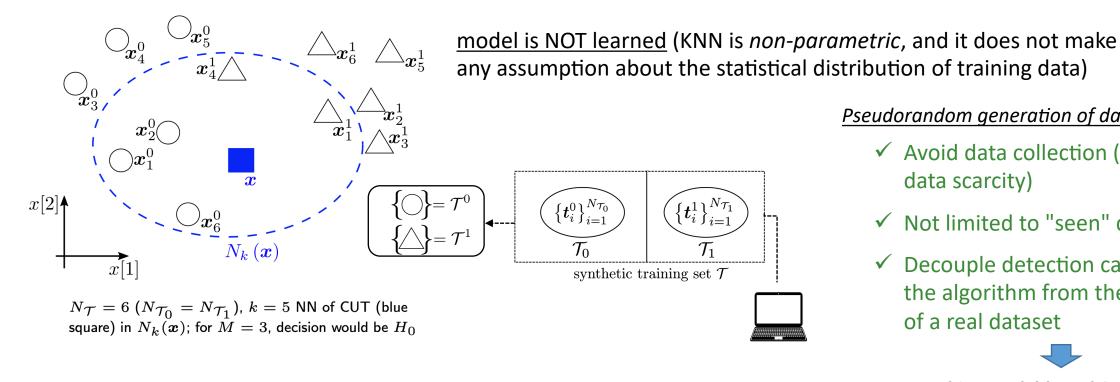
intuitive interpretation using general concepts from machine learning (data clusters, decision region boundary, classifiers,...)



classification

KNN-based Radar Detection

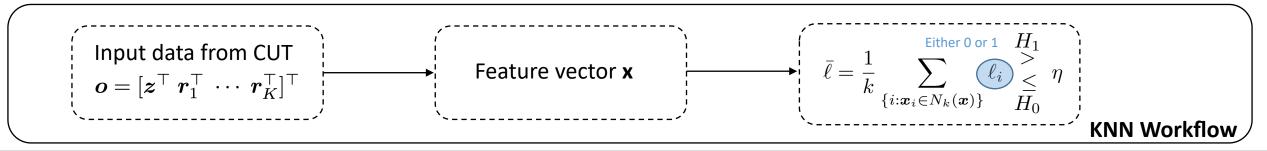
K-Nearest Neighbors (KNN): simplest ML algorithm for classification, easily interpretable



Pseudorandom generation of dataset

- ✓ Avoid data collection (problem of data scarcity)
- Not limited to "seen" data
- Decouple detection capability of the algorithm from the advantage of a real dataset

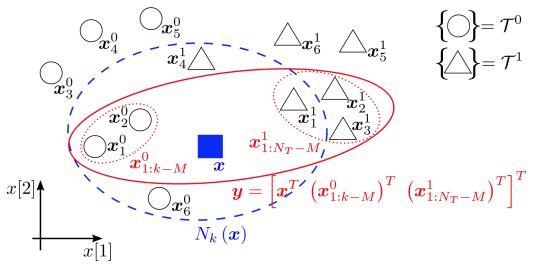
combine model-based & data driven



A. Fascista, "K-Nearest Neighbors: A Powerful Tool to Design Radar Detectors", GTTI Workshop "ML per i sistemi Radar e di Telerilevamento"

KNN-based Detectors: Theoretical Characterization

• KNN can be theoretically characterized (not usual for ML approaches)



$$\begin{aligned} P(\bar{\ell} > \eta) &= 1 - \binom{N_{\mathcal{T}}}{k - M} \binom{N_{\mathcal{T}}}{N_{\mathcal{T}} - M} \\ &\times E\left[I_{\mathcal{Y}}(\boldsymbol{y}) \left(p_0\left(\boldsymbol{x}, \boldsymbol{x}_{1:k-M}^0\right)\right)^{N_{\mathcal{T}} - k + M} \left(p_1\left(\boldsymbol{x}, \boldsymbol{x}_{1:N_{\mathcal{T}} - M}^1\right)\right)^M\right] \end{aligned}$$

returns P_{fa} or P_d according to the hypothesis actually in force

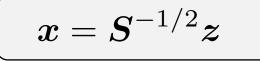
vectors can have any distribution, only two probabilities (p_0, p_1) matter

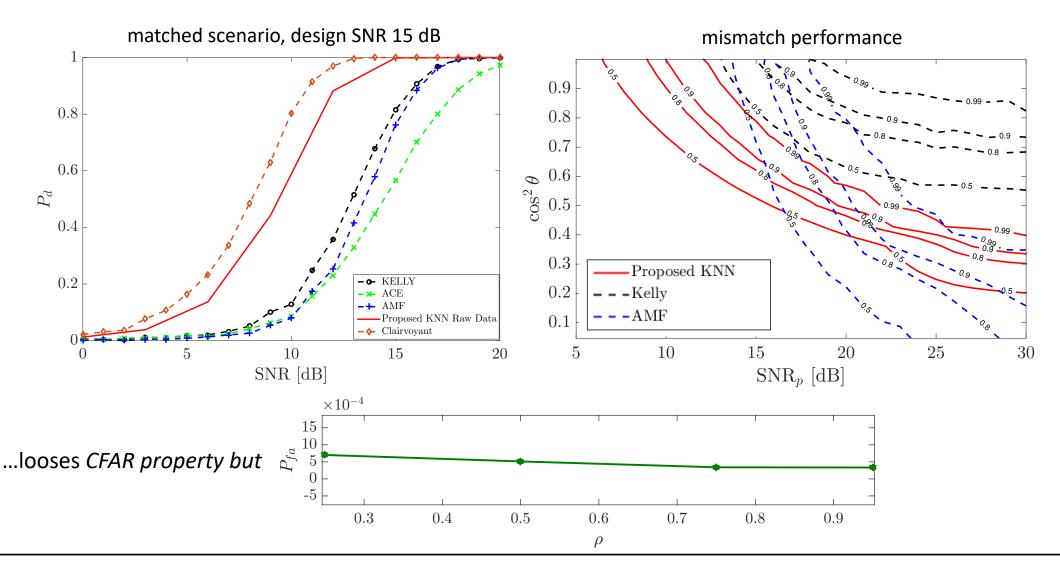
A. Coluccia, A. Fascista, G. Ricci: "A k-nearest neighbors approach to the design of radar detectors," Signal Proces., 2020

KNN-based Adaptive Detection in Gaussian Noise

5

First approach: use as feature vector **x** the "whitened data" under test

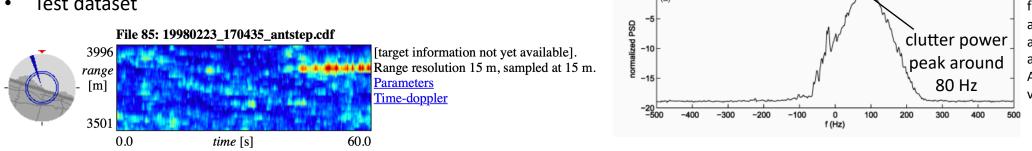




A. Fascista, "K-Nearest Neighbors: A Powerful Tool to Design Radar Detectors", GTTI Workshop "ML per i sistemi Radar e di Telerilevamento"

First KNN Approach: Analysis on real IPIX data

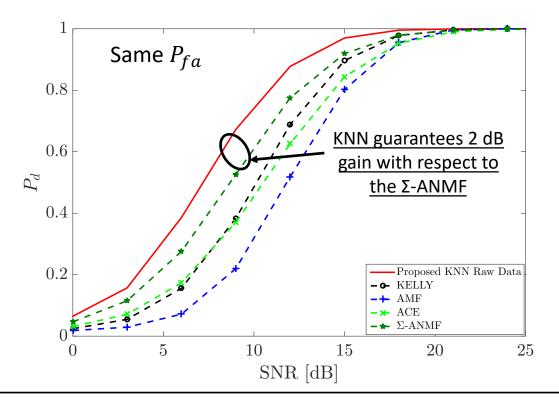
- Training data pseudorandomly generated
- Test dataset



from: A. De Maio, G. Foglia, E. Conte and A. Farina, "CFAR behavior of adaptive detectors: an experimental analysis," IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 1, pp. 233-251, Jan. 2005

6

Under H_1 we add a synthetic target with normalized Doppler frequency 80 Hz (target embedded in deep clutter)



actual P_{fa} larger than nominal one, but comparable among all the algorithms

Second Approach: KNN with well-known radar statistics

<u>Second approach</u>: use as feature vector x a set of well-known radar statistics sharing a common dependency on the *maximal invariant* statistics

$$oldsymbol{x} = \left[d_1 ilde{t} b[1] \ d_2 ilde{t} b[2] \ \cdots \ d_m ilde{t} b[m]
ight]^T$$
 with $b[j] = f_j(eta), \quad j = 1, \dots, m,$



$$t_{\text{AMF}} = rac{ ilde{t}}{eta}, \qquad t_{ ext{Kelly}} = rac{ ilde{t}}{1+ ilde{t}}$$

with
$$\tilde{t} = \frac{t_{\text{Kelly}}}{1 - t_{\text{Kelly}}}$$
 and $\beta = \frac{1}{1 + z^H S^{-1} z - \frac{|z^H S^{-1} v|^2}{v^H S^{-1} v}}$

- > AMF detector more inclined to decide for H_1 also in presence of mismatches thanks to its positive slope (*robust behavior*)
- horizontal line of Kelly's detector can effectively separate H₀ from H₁ under matched conditions (*selective behavior*)

7

Second Approach: An Example

Proposed KN1

e spa

8

Example: use a 2D feature vector with Kelly and AMF statistics

$$oldsymbol{x} = \left[egin{array}{c} d_1 ilde{t} \ d_2 rac{ ilde{t}}{eta} \end{array}
ight]$$

with d_1 and d_2 arbitrary (nonnegative) tuning parameters

Interpretation in the feature space - o- KELLY its decision region boundary i 7 one: 2 • it has a positive slope very close to a^{\forall} ıt $\cos^2\theta = 1$ 1.8 • then bends to try to get closer to the (matched $H_1)$ 1.6 IF \blacktriangleright in doing so, it can strike a balan 8 10 1214 16 1.4 performance, while guaranteeins up sume in a s 1.2 4 Proposed KNN -Proposed KNN • KELLY -o- KELLY 0.8matched HCellv's detector oroposed KNN + AMF + AMF 0.8 0.60.6 $\cos^2\theta \neq 0.65$ P_{d} P_{d} 0.6 0.4(mismatched 0.4 0.2 1520251214 ∞ dB SNR [dB] 0 SNR [dB] 0.2 0.3 0.4 0.6 0.8 0.5 0.7 (a) matched conditions $\cos^2 \theta = 1$ (b) mismatch A. Coluccia, A. Fascista, G. Ricci: "Robust CFAR radar detection using a k-nearest neighbors rule", IEEE ICASSP, 2020

the proposed detector is a *non-li*

A. Fascista, "K-Nearest Neighbors: A Powerful Tool to Design Radar Detectors", GTTI Workshop "ML per i sistemi Radar e di Telerilevamento"

KNN-based Detection of Coherent Targets in non-Gaussian Noise

Data model: *K-distributed clutter + thermal noise* z \square ۲ $\stackrel{H_1}{>}$ r_1 , $\mathbf{S}_n^{-1/2}$ - $\stackrel{\leq}{\overset{H_0}{H_0}}$ $\sqrt{\frac{1}{N-1}} \| \boldsymbol{P}_{\boldsymbol{v}}^{\perp} \boldsymbol{z} \|^2$ r_2 \square \hat{x} KNN detection $oldsymbol{x} = oldsymbol{S}_n^{-1/2} - oldsymbol{a}_n$, / · Г $\sqrt{rac{1}{N-1} \| m{P}_{m{v}}^{ot} m{z} \|^2}$ $r_{\scriptscriptstyle K}$ \square raw data $\left\{oldsymbol{t}_i^1
ight\}_{i=1}^{N au_1}$ $ig\{ oldsymbol{t}_i^0ig\}_{i=1}^{N_{\mathcal{T}_0}}$ \mathcal{T}_0 \mathcal{T}_1 synthetic training set \mathcal{T} Design SCR = 20 dB0.8 0.6 P_d 0.4→ Proposed KNN 0.2 $-\Sigma$ -ANMF 510 15202530 () SCR [dB]

A. Coluccia, A. Fascista, and G. Ricci, ``A KNN-based Radar Detector for Coherent Targets in non-Gaussian Noise'', to be submitted to IEEE SPL

KNN in non-Gaussian Noise: Analysis on Real IPIX Data

- Again training data pseudorandomly generate
- Test dataset

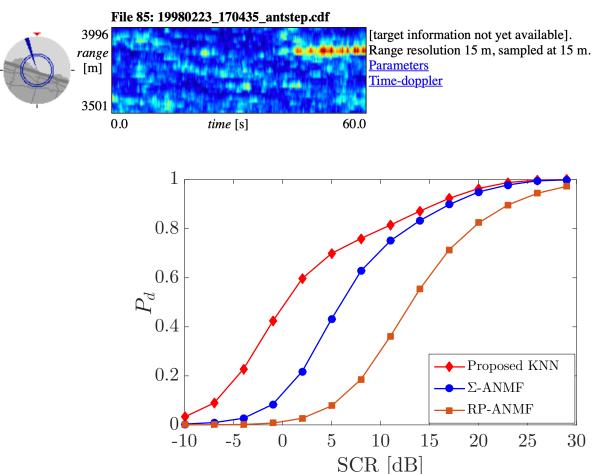


TABLE I Parameters and CV Distance (From Amplitude ECDF) of K-CDF with Same First- and Second-Order Moments of ECDF

	K-CDF					
	НН			VV		
Resolution	μ	V	d_{CV}	μ	$\overline{\nu}$	d_{CV}
30 m 15 m 3 m	139.950	0.420 0.370 0.820	12.317 18.767 18.057	54.457 50.482 3.789	0.640 0.710 2.030	9.914 11.190 5.663

from: E. Conte, A. De Maio and C.
 Galdi, "Statistical analysis of real clutter at different range
 resolutions," in IEEE Transactions on
 Aerospace and Electronic Systems, vol. 40, no. 3, pp. 903-918, July 2004

10

actual P_{fa} different from nominal one for all algorithms

A. Coluccia, A. Fascista, and G. Ricci, ``A KNN-based Radar Detector for Coherent Targets in non-Gaussian Noise'', to be submitted to IEEE SPL

Conclusions

- classical radar detection revisited under a machine learning perspective
- In typical radar scenarios, data are scarce and highly heterogeneous → combine model-based & data driven
- First KNN approach with raw data provides a significant gain, also on real data, but looses CFAR property (in practice, quite robust)
- Second KNN approach guarantees the CFAR property and allows the design of novel detectors with hybrid selective/robust behaviors
- ongoing work: a general framework for analysis and design of CFAR detectors in feature spaces

A. Coluccia, A. Fascista and G. Ricci, "*CFAR Feature Plane: A Novel Framework for the Analysis and Design of Radar Detectors*," in *IEEE Transactions on Signal Processing*, vol. 68, pp. 3903-3916, 2020.