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(" Artificial Intelligence (Al) is intelligence demonstrated by machines. )
Al is the study of "iIntelligent agents": any device that perceives its environment and takes actions that
maximize its chance of successfully achieving its goals.

The term "artificial intelligence” is often used to describe machines that mimic "cognitive" functions that
\_ humans associate with the human mind, such as "learning™ and “problem solving™. y

ﬂ' applications: \ ARTIFICIAL GENERAL
converting speech to text INTELLIGENCE

* lipreading

* face recognition

* malignant tumours
recognition

e price prediction

e film to recommend (Netflix,
Amazon Prime Video, etc.

& autonomous driving.
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Artificial Intelligence

Any technique that enables computers
%E to mimic human intelligence. It includes
machine learning

Machine Learning

A subset of Al that includes techniques that
enable machines to improve at tasks with
experience. It includes deep learning

Deep Learning

Hl A subset of machine learning based on
neural networks that permit a machine to
train itself to perform a task.




Machine Learning in formulas

Training Set =
v, m | 9= argmin lOSS[Yt,f(Xt, 19)]
{Yt) Xt}tzl v t = 1, ""Nt

Learning
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/ Machine Learnlng
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Machine Learning vs Deep Learning

Learning
from data
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Learning
from data

¥ o
Data :>[ Feature Feature ::> [ Classification :> 0
Extraction Selection Regression utput
Machine Machine
* PCA, SVD, LDA ﬁ Relevant * Linear/logistic regressor
. HOG, SIFT Features . SVM, SVR
* Dictionary Learning * Ensemble Learning
(e.g. KSVD) (Bootstrap, stacking,
. KDE Random Forest)
* Artificial Neural Networks
(ANN)
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” < Learning from data

7 Machine
Feature Feature Classification
Data I:,'} I:,'} I::,') [ : |::>
Extraction Selection Regression Output
Machine
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MLP
* CNN
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Input Feature extraction + Classification Output




Taxonomy: Learning Paradigms i
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Meaningful
Compression

Structure

Image
Discovery

Classification

Customer Retention

Big data Dimensionality Feature Idenity Fraud

. ) i i i Diagnostics
Visualistaion Reduction Elicitation Detection Classification 2

Recommender Advertising Popularity

e Unsupervised Supervised oo
Learning Learning Weather
Forecasting
Clustering M h . Regression
T J i
M_‘:iit:ii ac I n e Population Market
2 g Growth ;
. Forecasting
Prediction
Customer

Estimating
life expectancy

Segmentation Learni ng

Real-time decisions Game Al
Reinforcement
Learning

izl e o Skill Acquisition

Learning Tasks
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Input Data What is Supervised Learning?
‘? \ Prediction
Meaningful ructure ma é;lb
Con;.:'r;;?on giscotucry Classifflat?rf : Q 00 O ‘

Annotation
) / MOdeI
Big data Dimensionality Feature Idenity Fraud GEesiicn W
apples

Visualistaion Reduction Elicitation Detection

6?

Input Data Unsupervised learning

_~oee
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“ Model

@

Recommender
Systems

Unsupervised Superv
Learning Learn

METGIIER -

Grow
Prediction

*%

Clustering

&

largetted
Marketing

Customer

Segmentation Learni ng

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation . .
vigatio Skill Acquisition

Learning Tasks
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Input Data What is Supervised Learning?
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Annotation
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These are
apples

How Unsupervised Machine Learning Works
STEP| STEP2

Structure Image

Provide the machine learning algorithm uncategorized, Observe and learn from the Discovery Classificati
assification

unlabeled input data to see what patterns it finds patterns the machine identifies
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Feature Idenity Fraud
Elicitation Detection
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TYPES OF PROBLEMS TO WHICH IT’S SUITED
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Input Data Unsupervised learning
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CLUSTERING ANOMALY DETECTION M ac h Ine Popelat
Identifying similarities in groups Identifying abnormalities in data GI;C-W
For Example: Are there patterns in For Example: |s a hacker intruding in T
the data to indicate certain patients our network? ™ Prediction R .
\A’f“ res, ond’hener to this treatment Estimati ng
tl t! 2

earning e expectancy

Real-time decisions

Reinforcement
Learning

Robat Mavigation CLill A 1
gato Skill Acquisition

Learning Tasks
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Input Data What is Supervised Learning?

@\‘ Q Jol®)

Annotation
/ M°de|
These are
apples

How Unsupervised Machine Learning Works
STEPI STEP2

Structure Image

Provide the machine learning algorithm uncategorized, Observe and learn from the Discovery Classificati
€ assification

unlabeled input data to see what patterns it finds patterns the machine identifies

@ . \ SIMILAR GROUP |
(R—di alls o SIMILAR GROUP 2
. MACHINE MACHINE

CLUSTERING

Identifying similarities in groups
For Example: Are there patterns in
the data to indicate certain patients
will respond better to this treatment

than others?

Feature Idenity Fraud
Detection

Elicitation

é?

Input Data Unsupervised learning

T eeee
. Q*@éé

Model

ANOMALY DETECTI(

Identifying abnormalities i

internal state ““Neward

X

l enwronment

For Example: |s a hacker intru
our network?

learning rate o.
inverse temperature §
discount rate

observation




Taxonomy: Depth e G v

Shallow Neural Network Deep Neural Network

o afpa
; vy
S b

@ nput Layer () Hidden Layer

Output Layer



Taxonomy: Architectures
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Feedforward Neural Network

Convolutional Neural Network

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Machine Learning

Source No of Papers

Remote Sensing 360
ISPRS Journal of Photogrammetry and remote 118
800 — | | ‘ | Sensing
. : . IEEE Journal Of Selected Topics In Applied
Bl Machine Learning - Remote Sensing . ) 118
700 - |mmDeep Learning - Remote Sensing Earth Observations And Remote Sensing
Remote Sensing of Environment 91
600 -
International Journal of Remote Sensing 78
500 - IEEE Transactions On Geoscience And Remote 76
g Sensing
S400 - IEEE Geoscience And Remote Sensing Letters 38
o
3+

300 -
Deep Learning
200 -
I
100~ I. II Remote Sensing 309
oLm m B B l ISPRS Journal of Pr;g:](;?r:gmmetw and remote 117

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
IEEE Journal Of Selected Topics In Applied

year . . 106
Earth Observations And Remote Sensing
IEEE Transactions On Geoscience And Remote 88
Sensing
IEEE Geoscience And Remote Sensing Letters 81

IEEE Access 60
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Machine Learning

Source No of Papers

Remote Sensing 165
800 — ‘ ‘ IEEE Transactions On Geoscience And Remote 49
Bl Machine Learning - Radar Sensing
| ID L ing - Rad - . .
700 eep ~eafhing - macar Remote Sensing of Environment 40
600 - . ISPRS Journal of Photogrammetry and remote 30
sensing
500 - .
&
° .
5400 - . Deep Learning
% — —
300 Source No of Papers
200 - i Remote Sensing 103
IEEE Access 49
100 - ll .
Sensors Switzerland 45
QL =l —— —  mm = || l__l- “
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 IEEE Geoscience And Remote Sensing Letters 38
year
IEEE Transactions On Geoscience And Remote Sensing 29
ISPRS Journal Of Photogrammetry And Remote %6
Sensing
IEEE Journal Of Selected Topics In Applied Earth 24
Observations And Remote Sensing
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Classification  Object Scene Segmentation Change Fusion Image Others
Recognition Recognition Detection Registration

L. Ma, V. Liu, X. Zhang, Y. Ye,G. Yi, B. A. Johnson, Deep learning in remote sensing applications: A meta-analysis and review, IPRS Journal of
Photogrammetry and Remote Sensing, Elsevier, Vol. 152, pp. 166-177, June 2019
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ML/DL: Radar & Remote Sensing
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Others

Water/Snow

Vegetation
Application environment

0
Urban

L. Ma, V. Liu, X. Zhang, Y. Ye,G. Yi, B. A. Johnson, Deep learning in remote sensing applications: A meta-analysis and review, IPRS Journal of

Photogrammetry and Remote Sensing, Elsevier, Vol. 152, pp. 166-177, June 2019
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Definition of specific design rules for
ML\DL algorithms

Experience ®® Knowledge
Explainable Artificial Intelligence (XAl)

Data sets for ML\DL algorithms training in
radar and remote sensing applications

MlBayesian Neural Networks
Bayesian Neural Networks - Radar & Remote Sensing

Bayesian Neural Networks

Leverage the strenghts of Machine Learning
and Stochastic modeling T




Interesting reviews N @ v,

G. Camps-Valls, Machine Learning in remote sensing data processing, 2009 |EEE International
Workshop on Machine Learning for Signal Processing, Grenoble, 2009, pp. 1-6, doi:
10.1109/MLSP.2009.5306233.
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