

Communication and Learning in Dynamic Networks

Federico Mason

Supervisor: Prof. Andrea Zanella

Email: masonfed@dei.unipd.it

GTTI annual meeting, September 11, 2023

Introduction

Modern networks are characterized by heterogeneous applications

The same architecture must adapt to different scenarios in real time

Network control is distributed among multiple autonomous units

Introduction

We need to estimate the overall network status
→ Network Mapping

2. We need to coordinate multiple control units → Distributed Learning

3. We need to balance resources among services → Resource Allocation

Network Mapping: Scenario

We consider a group of **autonomous nodes** that move in a 2D or 3D scenario. At each timeslot t, each node $n \in \mathcal{N}$:

- Uses local sensors to observe the environment and estimate its own state
- Spreads its state estimate according to some communication strategy
- Exploits the received information to estimate the overall network state

Network Mapping: Model

Tracking model

accuracy

Communication

strategy

Each node $n \in \mathcal{N}$ is equipped with $|\mathcal{N}|$ Unscented Kalman Filters (UKFs):

- > The node *n* uses one UKF to compute the state estimate $\hat{s}_{n,n}(t)$
- It uses the other UKFs to compute the state estimates $\hat{s}_{n,k}(t)$, ∀ k ∈ N: k ≠ n

The **system performance** is given by:

$$\Omega = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} \left(\left| \hat{s}_{n,n}(t) - s_n(t) \right| + \sum_{k \in \mathcal{N}, k \neq n} \left| \hat{s}_{n,k}(t) - s_k(t) \right| \right)$$

Network Mapping: Approach

Error [m]

Benchmark:

new communications are started according to the age of the information

New proposal:

new communications are started according to the urgency of the information

 \succ Each node $n \in \mathcal{N}$ implements as additional UKF emulating the tracking process of the other nodes

Network Mapping: Results

We tune communication according to:

- Channel sensing
- State estimation

F. Mason, M. Giordani, F. Chiariotti, A. Zanella and M. Zorzi, "An Adaptive Broadcasting Strategy for Efficient Dynamic Mapping in Vehicular Networks," in *IEEE Transactions on Wireless Communications*, vol. 19, no. 8, pp. 5605-5620, May 2020

Network Mapping: Approach

We design two new models, named **CTRA+** and **3D-CTRA**, to operate in 3D scenarios

More advanced models lead to a higher communication overhead

Network Mapping: Results

F. Mason, M. Capuzzo, D. Magrin, F. Chiariotti, A. Zanella and M. Zorzi, "Remote Tracking of UAV swarms via 3D mobility models and LoRaWAN communications," in *IEEE Transactions on Wireless Communications*, vol. 21, no. 5, pp. 2953-2968, October 2021

Distributed Learning: Scenario

We consider a group of **autonomous nodes** that move in a 2D scenario. At each timeslot t, each node $n \in \mathcal{N}$:

- Spreads local information according to some communication strategy
- Exploits the received information to estimate the overall network state
- Decides in which directions to move in order to reach a target location

Distributed Learning: Model

- ➤ Each node is controlled by a Reinforcement Learning (RL) agent computing its policy $\pi(\cdot): S \to A$
- ➢ At each step t, the agent observes the state s_t ∈ S, takes an action $a_t \in A$ and receives a reward r_{t+1}
- In our system, multiple agents interact with the same environment

s of:

 $\pi(\cdot)$: $\mathcal{S} \to \mathcal{A}$

Performance is given in terms of:

Success probability P_{succ} Step per episode N_{step}

Distributed Learning: Approach

Centralized training:

all the nodes share their local experience with a central agent

Distributed implementation:

each node is controlled by a different instance of the central agent

We can adapt the same system to new scenarios by the Transfer Learning (TL) paradigm

Distributed Learning: Results

F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Zanella and M. Zorzi, "Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control," in IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 3, pp. 955-969, September 2021

Distributed Learning: Approach

Ideal scenario:

all the nodes observes the same system state

Benchmark scenario:

the communication policy is pre-determined

New proposal:

the communication policy is adapted to the control policy

Distributed Learning: Results

OC \rightarrow Omniscient Communication RC \rightarrow Random Communication CC \rightarrow Closest Communication

Resource Allocation: Scenario

We consider a network with multiple traffic flows $\phi \in \Phi$ associated with specific slice classes $\sigma \in \Sigma$

- Flows contend for the same computational and communication resources
- Performance depends on both resource allocation and slice characteristics

Resource Allocation: Model

We associate each node $n \in \mathcal{N}$ and link $\ell \in \mathcal{L}$ with a **learning agent**. At each timeslot *t*:

- Each node $n \in \mathcal{N}$ allocate its computational power
- ➤ Each link ℓ ∈ L allocates its communication bandwidth
- ➤ Each flow $\phi \in \Phi_{\sigma}$ computes its performance as $f_{\sigma}(\phi, t)$

The **system performance** is given by:

$$\Omega = \frac{1}{|\Phi|} \sum_{\sigma \in \Sigma} \sum_{\varphi \in \Phi_{\sigma}} f_{\sigma}(\phi, t)$$

Resource Allocation: Approach

Centralized training:

we train a different agent for each resource type and slice class

Distributed implementation:

we implement a different agent for each network facility and traffic flow

Transfer Learning (TL) can be used to refine the learned policy during the testing phase!

Resource Allocation: Results

F. Mason, A. Zanella and G. Nencioni, "Using Distributed Reinforcement Learning for Resources Orchestration in a Network Slicing Scenario," in *IEEE Transactions on Networking*, vol. 31, no. 1, pp. 88-102, Feb. 2023.

Resource Allocation: Approach

Ideal scenario:

learning agents and network users exploit **dedicated** resources

Real scenario:

learning agents and network users exploit **shared** resources

Resource Allocation: Results

F. Mason, F. Chiariotti, and A. Zanella, "No Free Lunch: Balancing Learning and Exploitation at the Network Edge," in *IEEE International Conference on Communications*, Seoul, South Korea, 2022

Conclusions

1. Networks require a more **flexible architecture** managed by multiple agents

2. Communication, control, and resource allocation must be jointly optimized

3. When **resources** are limited, **performance** is inversely proportional to **adaptability**

Communication and Learning in Dynamic Networks

Federico Mason

Supervisor: Prof. Andrea Zanella

Email: masonfed@dei.unipd.it

GTTI annual meeting, September 11, 2023