

Speckle2Void: Deep Unsupervised SAR Despeckling with Blind-Spot Convolutional Neural Networks

Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli Politecnico di Torino - Italy

Nov. 26, 2020

Synthetic Aperture Radar (SAR)

- Synthetic Aperture Radar (SAR):
 - coherent imaging system able to acquire ground images by emitting radiations and capturing the signals backscattered from the imaged scene.
- SAR images suffer from the presence of speckle, a signal dependent granular noise.
 - Difficult interpretation and information extraction.
 - Reduce the effectiveness of scene analysis algorithms (e.g., image segmentation, detection and recognition)
- Speckle is usually modelled as multiplicative noise:

Deep learning for Despeckling

- Despeckling is the very first step of many scene analysis algorithms.
- Recently, deep learning works have been suggested to exploit the powerful learning capabilities of CNN.
- All the proposed deep learning methods for despeckling exploit supervised learning:
 - Real SAR images do not have the corresponding clean images.
 - Resorting to synthetically speckled optical images or multi-temporal SAR images which are difficult to acquire.

Despeckling with supervised learning

• Training \rightarrow synthetic dataset (optical images are used as ground truth and their artificially speckled version as noisy inputs)

• Testing \rightarrow test SAR images are fed to the pre-trained CNN.

Domain gap

- Transfering knowledge is an issue:
 - Using pre-trained CNN on SAR images for testing:
 - Effective from a noise suppression viewpoint;
 - Presence of artifacts across the image;
 - Poor preservation of the radiometric features (different geometries and distribution properties).

• Solution:

 Exploiting a particular class of CNN called deep blind-spot network to enable direct training on real SAR images (Terra-SarX satellite) and no ground truth.

 The following Bayesian denoising framework incorporates the noise model allowing to use the noisy pixels to compute the clean estimate.

 $p(x_i|y_i, \Omega_{y_i}) \propto p(y_i|x_i)p(x_i|\Omega_{y_i})$

- $p(y_i|x_i)$ is the noise distribution, modelled as a $\Gamma(L, L)$
- $p(x_i|\Omega_{y_i})$ is the conditional image prior, modelled as an $inv\Gamma(\alpha_{x_i}, \beta_{x_i})$
- $p(x_i|y_i, \Omega_{y_i})$ is the conditional posterior, modelled as an $inv\Gamma(L + \alpha_{x_i}, \beta_{x_i} + Ly_i)$

Speckle2Void (training/testing)

• Training:

• The **blind-spot CNN is trained** to minimize the negative log likelihood $p(y_i | \Omega_{y_i})$ to produce $\alpha_{x_i}, \beta_{x_i}$ of $p(x_i | \Omega_{y_i})$ that best fit the noisy observations y_i .

$$p(y_i|\Omega_{y_i}) = \frac{L^L y_i^{L-1}}{\beta_{x_i}^{-\alpha_{x_i}} Beta(L, \alpha_{x_i}) (\beta_{x_i} + L y_i)^{L+\alpha_{x_i}}}$$

• Testing:

- Step 1: the blind-spot CNN produces α_{x_i} and β_{x_i} for each pixel.
- Step 2: use α_{x_i} and β_{x_i} to compute the expected value of the posterior distribution:

$$\widehat{x_i} = E[x_i | y_i, \Omega_{y_i}] = \frac{\beta_{x_i} + Ly_i}{L + \alpha_{x_i} - 1}$$

Correlated noise (I)

- Training a blind-spot network requires the noise to be spatially uncorrelated:
 - In SAR images, noise is **spatially correlated**.
- To solve this, we leverage two aspects:
 - whitening procedure [1] as a pre-processing step, to decorrelate the speckle.
 - a regularized training procedure with a variable blind-spot shape (in order to account for the autocorrelation of the speckle process);

[1] A. Lapini, T. Bianchi, F. Argenti, and L. Alparone, "Blind speckle decorrelation for SAR image despeckling,"IEEE Transactions on Geoscienceand Remote Sensing, vol. 52, no. 2, pp. 1044–1058, Feb 2014.

Whitening procedure (I)

Original noisy

White, 1x1 spot

1x1 spot

 Applying a decorrelation process before training our blind-spot network is compelling to obtain a decent output clean SAR image

Regularized training procedure

 During training, we alternate the following blind-spot shapes with predefined probability:

• It allows to tune the degree of reliance of the CNN on the immediate neighbours

- improvement of the high frequency details in the denoised image;
- suppression most of the noise correlation.

Qualitative performance (I)

Noisy(white)

PPB

SAR-BM3D

CNN baseline

Speckle2Void

Qualitative performance (II)

Quantitative performance

Metric	Image	PPB [31]	SAR-BM3D [7]	CNN baseline	ID-CNN [12]	Speckle2Void	Speckle2Void NL
ENL ↑	1	82	46.2	52.9	76.5	88.5	86.5
	2	78.6	49.1	48.7	69.9	89.9	81.8
	3	76.9	58.1	52.5	73.1	84.0	86.0
	4	54.2	40.4	37.6	46.2	54.7	53.1
	5	22.9	16.2	14.6	16.6	18.9	17.5
$\mu_r\uparrow$	1	0.887	0.919	0.963	0.943	0.966	0.970
	2	0.925	0.938	0.969	0.964	0.966	0.967
	3	0.926	0.941	0.974	0.969	0.968	0.968
	4	0.933	0.942	0.974	0.976	0.962	0.977
	5	0.853	0.894	0.950	0.918	0.947	0.946
$\sigma_r \uparrow$	1	0.847	0.627	0.726	0.745	0.803	0.800
	2	0.886	0.674	0.740	0.803	0.829	0.817
	3	0.874	0.684	0.756	0.817	0.816	0.814
	4	0.876	0.688	0.755	0.846	0.823	0.837
	5	0.891	0.549	0.683	0.664	0.748	0.736
<i>M</i> [44] ↓	1	24.4	16.5	11.9	14.6	7.72	6.71
	2	10.1	11.6	11.6	9.12	9.11	8.04
	3	9.82	11.3	11.3	6.93	6.24	5.44
	4	10.6	10.5	12.3	9.7	8.07	7.74
	5	14.4	14.3	9.76	10.4	8.91	7.9
RIS [45] ↓	1	0.402	0.186	0.145	0.242	0.0929	0.0817
	2	0.114	0.0765	0.0925	0.112	0.0918	0.075
	3	0.114	0.0782	0.113	0.0643	0.0396	0.0257
	4	0.0962	0.0392	0.127	0.106	0.0873	0.0804
	5	0.159	0.114	0.0566	0.130	0.0708	0.0547

Future work

- Devising a method to get rid of the noise correlation:
 - fully incorporated in the blind-spot network;
 - End-to-end trainable by adding a contrastive component in the current loss.

<u>www.ipl.polito.it</u> Follow us on Twitter: @IPLPolito

Thank you!

Speckle2Void Architecture

Speckle2Void Architecture

POLITECNICO DI TORINO

