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Aim

◦ Finding a solution for the RAN slicing of eMBB and URLLC traffics;
◦ The solution should exploit the dynamic nature of URLLC traffic.

Why Reinforcement Learning?
◦ Performing slicing of different type of traffic is a hard task;
◦ RL is able to find very good policies for systems that dynamically change
through time;
◦ differently from other machine learning techniques, RL does not require
collected data for training.
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Scenario & Resources

We consider a downlink transmission for single cell scenario with two set of users:
eMBB and URLLC users.
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◦ F frequency resources;
◦ time resources are divided in Σ time slots;
◦ each time slot is divided in M mini slots.
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enhanced Mobile BroadBand (eMBB)

Specifications:
◦ high throughput;
◦ no latency requirement;
◦ resource allocation is made on a time slot basis;
◦ perfect knowledge of channel state information (CSI) at the BS.
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eMBB resource allocation can be
performed following conventional
methods (e.g.water-filling, wMMSE,
etc.)
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Ultra Reliable Low-Latency Communication (URLLC)

Specifications:
◦ low outage probability (≤ 10−5);
◦ stringent latency requirement (≤ 1 ms);
◦ resource allocation is made on a mini slot basis

In our setting, each packet:
◦ has length equal to a mini slot;
◦ is generated in each mini slot following a Bernoulli with probability pu;
◦ has a strict latency requirement lmax

u ;
◦ is stored in a in FIFO queue Q of infinite length;
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URLLC and eMBB coexistence

eMBB codewords:
◦ the BS distributes different codeword for

each user;
◦ codeword length is multiple of a mini slot;
◦ each codeword is protected by a code able

to recover D erased mini slots.

URLLC puncturing:
◦ each URLLC packet is transmitted through

puncturing selecting a time-freq resource;
◦ a transmitted URLLC packet is always

successfully decoded.
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RL in a nutshell

Reinforcement Learning
Reinforcement Learning is a field of Machine Learning studying the behaviour
(policy) of a certain agent (model) acting in an environment (in which Markov
property holds).

At ∈ ASt ∈ S

rewardstate action

Agent

Environment

Rt

Rt+1

St+1

◦ The agent accumulates a discounted return
Gt =

∑∞
k=0 γ

kRt+k+1 with γ ∈ [0, 1);
◦ The probability distribution of Gt depends on the policy
π(a|s) that chooses the action a for each possible state s;

The objective of RL is to find a policy that maximizes the expected discounted
return.
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Model as a Markov Decision Process

Each step t of the simulation is a mini slot of the allocation grid.
◦ Actions: At = {0, 1, . . . , F}, where 0 means no transmission, while otherwise

the action indicates the FR index.
◦ State: St = {S(u)

t ,S(e)
t } where

• S(u)
t = {Qt, ∆t}

• S(e)
t = {st(f)}F

f=1 tracking how much the eMBB codeword on (t, f) is protected.

◦ Reward: Rt =
∑

w∈Wt

et(w) + Lt

et(w) =
{
−1, if At causes the outage of w,

0, otherwise,
Lt =

{
0, ∆t ≥ 0,

− 3T
F +1 , ∆t < 0.
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PPO and NN Architecture

Proximal Policy Optimization (PPO):
◦ aims to the biggest possible improvement step on a policy without ending too
far from the starting point one, thus avoiding the risk of performance collapse;
◦ is an actor-critic algorithm → two different neural networks are required.

NN architecture:
Two completely separated subnetworks:
◦ value function: three ReLU dense layers with 128, 64, and 32 neurons +
fourth with single neuron to estimate the value with no activation;
◦ policy function: three ReLU dense layers with 128, 64, and 32 neurons + dense
fourth layer with F + 1 neurons to choose the actions with softmax activation.
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Simulation parameters

◦ Resource grid: F = 12, 10 time slot, M = 14 mini slot each → T = 140;
◦ Users: 1 URLLC user, 10 eMBB users;
◦ Maximum delay constraint to lmax

u = 7;
◦ Degree of protection of eMBB codewords: D ∈ {0, 1}.

Learning phase
◦ the parameters related to eMMB resource allocation and URLLC traffic
generation are randomized on an episode basis: random allocation, codeword
placement, protection of each codeword, and probability of URLLC packet.
◦ We initialize each episode with a random number of URLLC packets in the
queue (always smaller than lmax

u ).
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Comparison schemes

◦ Aggressive. The URLLC packet is transmitted immediately on a randomly
chosen frequency.
◦ Threshold Proportional (TP). The URLLC packet is transmitted immediately

on the frequency resource occupied by the codeword with the highest
puncturing threshold1.
◦ TP-lazy. As long as ∆t > 0, the packet is transmitted only if the present state

is somehow better (or equal) than the next one. If ∆t = 0, the transmission is
forced in the present mini slot. In any case, the choice of the frequency is
made according to the TP scheme.

1A. Anand, G. de Veciana, and S. Shakkottai. “Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless

Networks”. In: IEEE/ACM Transactions on Networking 28.2 (2020), pp. 477–490.15/24



Average total reward, T = 140
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Average total reward, T = 1400
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The same NN trained for T = 140 is used here, proving the generalization capacity of the agent.
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eMBB codeword in outage vs pu, T = 1400
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eMBB codeword in outage vs degree of protection
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Conclusions

◦ We proposed a Deep Reinforcement Learning approach to the slicing task with
respect to eMBB and URLLC traffic;
◦ Our agent learns from scratch a policy outperforming all the man-made
schemes over multiple performance metrics;
◦ The agent’s learned policy is agnostic to the length of each episode allowing
for fast self-training while still being applicable to the real world task.
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Future works

◦ Taking into account the reliability of the URLLC user;
◦ Adopting a Poissonian distribution to better simulate the generation of
URLLC packets;
◦ the agent should be able to transmit more than one packet over multiple
frequencies;
◦ Enabling the Power Domain Non-Orthogonal Multiple Access (NOMA)
communication.
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Thank you for the attention.
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