Deep Learning Based PRACH load estimation for future mMTC scenarios

Luciano Miuccio, Daniela Panno, Salvatore Riolo

GTTI Workshop

Wireless Intelligence: From Reconfigurable Surfaces to Edge/Cloud Communications

March 26th, 2021

Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (Department of Electrical, Electronics and Computer Engineering)

5G and 5GB/6G requirements comparison

- Connectivity Density (Devices/km²): From 10⁶ to 10⁷.
- **Spectrum efficiency:** 5x in 6G with respect to 5G.
- Network Energy Efficiency: 100x in 6G compared to 5G.

Usage of tailored random access control schemes for avoiding network collapse.

Z. Zhang et al., "6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies," in IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28-41, Sept. 2019.

Access control schemes for 5GB/6G

To function properly, these schemes need to have information about the current number of attempting access requests (M)

Deep Learning Based PRACH load estimation for future mMTC scenarios

Contention based procedure vs Contention free procedure for traffic load estimation

For the estimation of the traffic load in massive MTC scenarios the usage of a Contention based-RA procedure provides important information:

- 1. the number of collided preambles (P_C) ;
- 2. the number of succeeded preambles (P_S) .

Traffic load (M) estimation problem formulation

$$\widetilde{M} = f(P_S, P_C) = P_S + P_C \left(\frac{1}{P_C} \sum_{p \in \mathbf{P}_C} M_p\right) (1)$$

Having M = 9MTC devices that generates the reported sets P_C and P_S , with cardinality P_C and P_S , the estimated number of MTC devices by using (1) is $\tilde{M} = 2 + \frac{1}{3}2 + \frac{1}{3}2 + \frac{1}{3}2 + \frac{1}{3}3 = 8.9\overline{9}$. The M_p value represents the number of MTC devices that selected preamble p.

 M_p cannot be known, so it has to be estimated by means of the value K_c , that was termed "collision coefficient".

$$\mathbf{P}_{\mathbf{T}} = [\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_9] = [2, 10, 10, 1, 3, 3, 1, 10, 4]$$

$$K_{C} = \frac{1}{P_{C}} \sum_{p \in P_{C}} M_{p} \quad (2)$$

Traffic load estimation methods available in literature

1. Empirical relation with very low complexity, proposed in [14]

$$\tilde{M} = P_S + 2 \cdot 1.97^{\frac{P_C}{L}} P_C$$

- [14] L. Miuccio, D. Panno and S. Riolo, "Dynamic Uplink Resource Dimensioning for Massive MTC in 5G Networks Based on SCMA," European Wireless 2019; 25th European Wireless Conference, Aarhus, Denmark, 2019, pp. 1-6.
- 2. Mathematical relation with huge complexity, proposed in [10]

$$Pr\{P_S, P_C \mid M, L\} = \frac{1}{L^M} \binom{M}{P_S} \binom{L}{P_S} P_S! \binom{L-P_S}{L-P_S-P_C} \sum_{i=0}^{P_C} (-1)^i \binom{P_C}{i} \sum_{w=0}^i \binom{M-P_S}{w} \binom{i}{w} w! (P_C-i)^{M-P_S-w}$$
$$\tilde{M} = \operatorname*{arg\,max}_{M'} \left(Pr\{P_S, P_C \mid M', L\} \right)$$

[10] G. Lin, S. Chang and H. Wei, "Estimation and Adaptation for Bursty LTE Random Access," in IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 2560-2577, April 2016.

3. Mathematical relation with low complexity, working only for $M \ge L$, proposed in [11]

$$\tilde{r} = \min\left\{1, r\left(1 + \frac{[P_C - L(1 - 2e^{-1})]e}{2L}\right)^{-1}\right\}$$
 $\tilde{M} = \frac{L}{\tilde{r}}$

[11] S. Duan, V. Shah-Mansouri, Z. Wang and V. W. S. Wong, "D-ACB: Adaptive Congestion Control Algorithm for Bursty M2M Traffic in LTE Networks," in *IEEE Transactions on Vehicular Technology*, vol. 65, no. 12, pp. 9847-9861, Dec. 2016.

Working region determination

With L equal to the number of available preambles if the number of attempting devices is too high it is not possible to perform an estimation on the basis of P_C and P_S , since the association is not unique. $\widetilde{M} = f(P_L, P_L)$

$$\widetilde{M} = f(P_S, P_C)$$

There is the need to set the maximum number of supported MTC devices for each $L = L_0 T_{pr}$, with $T_{pr} = \{1,2,3,4\}$.

Pmf of P_C:
$$p_{P_C}[k] = {\binom{L}{k}} \left[1 - \left(1 - \frac{1}{L}\right)^M - M\left(\frac{1}{L}\right) \left(1 - \frac{1}{L}\right)^{M-1} \right]^k \left[1 - \left(\frac{1}{L}\right)^M + M\left(\frac{1}{L}\right) \left(1 - \frac{1}{L}\right)^{M-1} \right]^{L-k}$$

We set: $\Pr\{P_C = L_0 T_{pr}\} \le \gamma = 10^{-6}$

 M_{max}^h is the supported maximum value of M, for $h = T_{pr}$. Then,

$$M_{max}^h = g(L_0 h, \gamma)$$

$$\bar{P}_S = M \left(1 - \frac{1}{L}\right)^{M-1}$$
$$\bar{P}_C = L \left[1 - \left(1 - \frac{1}{L}\right)^M - M \left(\frac{1}{L}\right) \left(1 - \frac{1}{L}\right)^{M-1}\right]$$

 T_{pr} = number of Time slots dedicated to PRACH.

Derivation of the dataset

On the basis of the **determined working region**, by simulations we created the dataset with the following parameters. For each configuration $T_{pr} \in \{1,2,3,4\}$ and $M \in M_{max}^{T_{pr}}$: **Inputs:** P_C , P_S , and T_{pr} **Output:** \widetilde{K}_C **N**_{sim}: 10000 Total points in the dataset: 21790000 Percentage of points in the training set: 90% of the dataset Percentage of points in the test set: 10% of the dataset Test set: $S_{TE} \supset S_{TE}^h$

Trained DNN

 S_{TR}

Loss function: Mean Square Error (MSE)

Activation function: Rectified Linear Unit (ReLU)

Number of hidden layers: 3

Number of nodes for each hidden layer: 92

Additional features for preventing vanishing and exploding gradients problems: **Xavier initialization** and **batch normalization**.

 $\widetilde{\mathbf{M}} = f(\mathbf{P}_{\mathbf{S}}, \mathbf{P}_{\mathbf{C}}) = \mathbf{P}_{\mathbf{S}} + \widetilde{K}_{C} \mathbf{P}_{\mathbf{C}}$

Deep Learning Based PRACH load estimation for future mMTC scenarios

Key Performance Indicators for K_C estimation methods comparison

• The **Coefficient of Determination**:

Jniversità

$$R_h^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$SS_{res} = \sum_{i=1}^{S_{TE}^{n}} (\tilde{y}_{i}^{h} - y_{i}^{h})^{2}$$
$$\bar{y}^{h} = \frac{1}{S_{TE}^{h}} \sum_{i=1}^{S_{TE}^{h}} y_{i}^{h}$$
$$SS_{tot} = \sum_{i=1}^{S_{TE}^{h}} (y_{i}^{h} - \bar{y}^{h})^{2}$$

The better the estimation fits the data in comparison to the horizontal straight line (the null $\tilde{y}^h = \bar{y}^h$ hypothesis), the closer the value of R_h^2 is to 1.

• The Root Mean Square Error (RMSE) for the set S_{TE}^h :

$$RMSE_{h} = \sqrt{\frac{1}{S_{TE}^{h}} \sum_{i=1}^{S_{TE}^{h}} (\tilde{y}_{i}^{h} - y_{i}^{h})^{2}}$$

The lower $RMSE_h$, the better the accuracy of the estimation for $h = T_{pr}$.

Performance evaluation of the estimate in a single RA cycle

	DNN_K -based		Proposed in 10		Proposed in [11]		Empirical method	
	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2
$T_{pr} = 1$	0.2180	0.7941	0.9302	-1.8897	0.2369	0.7548	0.2286	0.7770
$T_{pr} = 2$	0.1803	0.9202	1.2512	-5.1714	/	/	0.2017	0.8779
$T_{pr} = 3$	0.1651	0.9507	1.4521	-4.6340	/	/	0.2589	0.8402
$T_{pr} = 4$	0.1556	0.9644	1.5999	-4.3127	/	/	0.3328	0.7882

Average value of $RMSE_h$ and R_h^2 values achieved in the estimation of K_c for the considered methods

Average value of $RMSE_h$ values achieved in the estimation of M for the considered methods

	DNN_{K} -based	Proposed in [10]	Proposed in [11]	Empirical method
$T_{pr} = 1$	5.80	32.64	6.47	6.23
$T_{pr} = 2$	12.60	104.41	/	14.60
$T_{pr} = 3$	19.30	193.70	/	34.15
$T_{pr} = 4$	25.81	294.41	/	62.93

Attiva Windows

$$\widetilde{\mathbf{M}} = f(\mathbf{P}_{\mathrm{S}}, \mathbf{P}_{\mathrm{C}}) = \mathbf{P}_{\mathrm{S}} + \widetilde{K}_{C} \mathbf{P}_{\mathrm{C}} (1)$$

Note: "/" means that the complexity was so huge that cannot be computed by means of standard processors.

Deep Learning Based PRACH load estimation for future mMTC scenarios

Performance evaluation of the estimate in a single RA cycle

--- Empirical DNN-based Proposed in [10] ---- Proposed in [11]

cuction RMSE 6 0 6

Reconstru 05

10

Comparison among the considered estimation methods for $T_{pr} = 1$ (i.e., L = 54), as M changes.

Density scatter plots of \widetilde{M} vs M values with the $T_{pr} = 1$ dimensioning.

Performance evaluation of the estimate in a single RA cycle

Comparison among the considered estimation methods for $T_{pr} = \{2, 3, 4\}$ in terms of reconstruction RMSE, and density scatter plots of \widetilde{M} vs M values with the $T_{pr} = 4$ (i.e., L = 216).

Reconstruction RMSE

--· Empirical

Number of attempting MTC devices (M)

Reconstruction] 52 05 15

DNN-based

Deep Learning Based PRACH load estimation for future mMTC scenarios

Evaluation of the estimation in a long term analysis applying the Dynamic Uplink Resource Dimensioning (DURD) scheme that uses an SCMA technique

Considering the available data transmission resources for the Sparse Code Multiple Access (SCMA) technique

$$DT_{max} = \left\lfloor \frac{\lfloor \frac{72}{Q} \cdot 14 \rfloor (QK_{max})/S}{\lceil \theta_{max}/\log_2(I) \rceil} \right\rfloor (T_{ra} - T_{pr}),$$

and the average number of available access resource

$$\bar{P}_S = M \left(1 - \frac{1}{L} \right)^{M-1}$$

the average number of succeeded communications for each RA cycle is:

$$\bar{C}_S = \min(\bar{P}_S, DT_{max})$$

The DURD is applied for each RA cycle following this criterion:

$$T_{pr}^{j+1} = \operatorname*{arg\,max}_{T_{pr} \in \{1, \dots, T_{ra} - 1\}} \left\{ \bar{C}_S(\tilde{M}^j) \right\}$$
$$M^{j+1} \cong \tilde{M}^j$$

Symbol	Value
L_0	54
B	$1.08 \mathrm{~MHz}$
N_{MTC}	50000, 100000
M_A	10
θ_{max}	160 bits
α	3
β	4
$T_{Arrival}$	10s
T_{ra}	5 time slots
T_{sim}	10s (2000 RA cycles)
Q	4
K_{max}	3
S	2
B_W	20ms
Ι	4

Performance evaluation of the estimate for a long term analysis

- Ideal amount of traffic load per RA cycle $(DURD_I)$.
- Amount of traffic load per RA cycle estimated by means of empirical formula $(DURD_E)$.
- Amount of traffic load per RA cycle estimated by means of the proposed DNN $(DURD_{DNN})$

Deep Learning Based PRACH load estimation for future mMTC scenarios

Conclusion & Future work

- Machine learning is bringing new tools for enabling network optimization in the view of 5GB and 6G.
- We analyzed the problem of estimating the traffic load on the basis of the PRACH information available at the gNB, we created both a proper dataset and an optimal DNN for addressing the problem, and benchmarked with good results our scheme with other schemes available in literature.
- Due to the <u>importance of random access schemes</u> and their required optimal functionality, **works in implementation** aim to apply the estimate outside the determined working region by means of more complex procedures based on Deep Learning.

Thank you for your attention!

Contact Info:

Luciano Miuccio, Daniela Panno, Salvatore Riolo

Email: luciano.miuccio@phd.unict.it, daniela.panno@dieei.unict.it, salvatore.riolo@unict.it

