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1. Vessel prediction: motivation

2. Statistical prediction

3. Sequence-to-sequence models
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* Need to monitor vessels in open seas
and across sensor coverage gaps
* Accurate long-term state prediction
is crucial to, among other possibilities:
— Maritime traffic modeling
— Search and Rescue (SaR) operations

— Association of time-sparse data, such as
AlS and detections/tracks from
radar/SAR
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for long-term prediction," in IEEE Transactions on Aerospace s !
and Electronic Systems, vol. 52, no. 5, pp. 2313-2330, October !
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= Theoretical p.d.f

= Theoretical p.d.f.

= Theoretical p.d.f.

Validation with
~200,000 AlIS messages:

1,370 cargo * 370 tanker
150 passenger
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Maritime traffic is inherently regular

— Traffic requlations, fuel consumption minimization

Large availability of historical data

Can we learn recurrent patterns and use
them to make better predictions?

CENTRE FOR MARITIME RESEARCH AND EXPERIMENTATION

S

organization

¥ Jonképing
Gothenburg Boras o
N x.a:,o" o

g Randers
> o

/ (€4
Aarhys g R, o 'E2: skre
@, ! i ai K ‘\'.‘ r ?
‘\_‘ "“C"f'_ /1 FicT ln?gborg Kristianstad - "i i
- b | s I d
2jle 0 Co enr}g' n '
. - y @ g!'g‘ oLund
Deifimark = Roskilde 0.
& r U £ Malmo
ingy B Odeonée . Sielland {
Fyn \ _;‘S\C./.:el‘:w (.4
e < 9 I
SN A
X | / ,
\\. 4
ourg _ﬁ\
" gh—— X [
Kidl N
& 2
[£2:]




"m [\ *\l @)
‘(r O l',\N SCIENCE AND TECHNOLOGY ORGANIZATION

organization

CENTRE FOR MARITIME RESEARCH AND EXPERIMENTATION

* Pros

* Fully analytic

* Does not require resampling
e Cons

1) Detection of

navigational * Requires scene-dependent fine-tuning
V\aypomts : .
> * Actual performance depends on the quality
of the clustering of waypoints
x10*
2) Clustering of 3 I I I I ] I
navigational Observation
waypoints 2 B |nitial state
1k %—\'1 i
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) 0F —4A— Ground truth | 7
3) Mergmg and ® QU prediction
pruning A+ 4
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N. Forti, L. M. Millefiori and P. Braca, "Unsupervised extraction of maritime patterns of e i
life from Automatic Identification System data," OCEANS 2019, Marseille, France, 2019.
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P. Coscia, P. Braca, L. M. Millefiori, F. A. N. Palmieri and P. Willett, "Multiple Ornstein— 8 . I L L | ¢ . \

Uhlenbeck Processes for Maritime Traffic Graph Representation," in IEEE Transactions -6 -4 -2 0 2 4 6
on Aerospace and Electronic Systems, vol. 54, no. 5, pp. 2158-2170, Oct. 2018. X [m] x10%
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* Input sequences (length [)
Xy 2 (X)fek-141 €S, % ERC

* Output sequences (length h = 1)

yk,h = {y‘r}];:}icl+1 cs, y: € R4

* Goal: learn a mapping ¢, , between input and
output sequences to model a predictive distribution

P([x)
Yien = Oun(Xk)
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° output
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Sequence-to-sequence models
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output sequence
vessel trajectory A

input sequence

Recurrent Neural Networks (RNNs)

* Extension of feedforward NNs to capture the
temporal dynamics
hy, = f(Wh*x,, Whth,_,)
Vi = W'hy,

* With standard RNNs, the input-output sequence
alignment must be known ahead of time

* Not clear how to apply RNNs with input and
output sequences of different length

* Asimple strategy can be to use two RNNs in an
encoder-decoder architecture
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1. The encoder RNN processes the input sequence X
and produces a fixed-dimensional vector
representation

€ = fenc(X)

2. The decoder RNN recursively generates the
output sequence conditioned on the context of
the input

?(’ylﬁ) = fdec(€)

» Standard RNNs would be difficult to train due to
long-term dependencies and vanishing gradient

* Complex activations such as LSTM comes to help
to capture long-term dependencies and use
previous context more efficiently than standard
RNNs
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Probabilistic interpretation

Py, Yulxe, o xy) = H?(yklc,yk_l. Y1)
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S. Capobianco, L. M. Millefiori, N. Forti, P. Braca and P. Willett, “Deep-learning
methods for vessel trajectory prediction based on recurrent neural networks,” in
preparation, 2020.
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Experimental results

—

* Data |abe|ing » } »  DawisH MAmiTIE AuThoniTy
* Augment data with additional inputs about the T Ipout sequence AR P
vessel’s high-level intention behavior (e.qg., o predtion. : : s
destination) SRR SRR S e

S. Capobianco, L. M. Millefiori, N. Forti, P. Braca and P. Willett, “Deep-
learning methods for vessel trajectory prediction based on recurrent
neural networks,” in preparation, 2020.
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Experimental results

; text
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S. Capobianco, L. M. Millefiori, N. Forti, P. Braca and P. Willett, “Deep-
learning methods for vessel trajectory prediction based on recurrent
neural networks,” in preparation, 2020.
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Experimental results
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DANISH MARITIME AUTHORITY

* ‘Input sequence -
® Ground truth

* Prediction uncertainty modeling
* Aleatoric-epistemic uncertainty modeling
* Gaussian distributions are computed in output
(parametrized in mean and covariance)
» Comparison with statistical motion models
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