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Three critical challenges of distributed cvber-attacks
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Three critical challenges of distributed cvber-attacks

1. Identifyingand banning the sources of
the cyber-attack (e.g., the botsin a
Distributed Denial-of-Service)
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2. Containing the spreading of a cyber-
threat (e.g., a virus or a malware)
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Three critical challenges of distributed cyber-attacks

1. Identifyingand banning the sources of
the cyber-attack (e.g., the botsin a
Distributed Denial-of-Service)

2. Containing the spreading of a cyber-
threat (e.g., a virus or a malware)

3. Adding controlled network redundancy in
view of some defeat (e.g., a network node
crashes)
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Main Contributions

Proposed solution: inferential strategies to detect, identify, and mitigate the distributed attacks

1. Formal Characterization of a distributed attack in a randomized setting?
*  Botnet model with randomized emulation of legitimate traffic

*  Designed-from-the-scratch algorithm for hidden botnet identification

2. Analytical Model of the attack spreading phenomenon?
* Kendall’s Birth-Death-Immigration model to formalize a spreading attack

*  Optimal curing resource allocation for attack mitigation

3. Stochastic Techniques for prevention measures
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*  Modeling network resilience against attacks

*  Stochastic approaches: SRN (Stochastic Reward Nets) and original extension
of UGF (Universal Generating Function) - Multidimensional UGF (MUGF)3

IMatta V., Di Mauro M., Longo M., DDoS Attacks with Randomized Trdffic Innovation: Botnet Identification Challenges and Strategies,
IEEE Transactions on Information Forensics and Security, Vol. 12, n°8, Aug.17, pp. 1844-1859

2Matta V., Di Mauro M., Longo M., Farina A. Cyber-Threat Mitigation Exploiting the Birth-Death-Immigration Model,
IEEE Transactions on Information Forensics and Security, Vol. 13, n°12, Dec. 2018, pp. 3137-3152

3Di Mauro M., Longo M., Postiglione F. Avadilability Evaluation of Multi-tenant Service Function Chaining Infrastructures by
Multidimensional Universal Generating Function, submitted on IEEE Transactions on Services Computing




I. Novel Class of Randomized DDoS Attack

DoS (Denial of Service) attack: “volumetric” attack where a target site is overwhelmed

with a huge request rate by a single node.

Distributed DoS attack (DDoS): a huge number of apparently innocuous requests is
produced in parallel by a net of robots (Botnet) coordinated by a Controller (Botmaster).

* Hardtoidentify single nodes of a Botnet

* |t is one of the most critical threats to face

Key Idea: designing an “enhanced DDoS attack” where:
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The Botnet emulates the regular traffic patterns (application layer) by
gleaning admissible messages from an “emulation dictionary” (that
becomes richer and richer as time elapses) built by the Botmaster during
a collection phase to evade detection

Experiments have been carried out in a realistic testbed set up in CoRiTel
(Consortium Research on Telecommunication) LAB




The Botnet Identification Condition (BIC)

Key point: define a Message Innovation Rate (MIR) 0 defined as the number of distinct
messages (picked from emulation dictionary) transmitted per unit time from bots.

Intuition: Botnet MIR is smaller than normal (and independent) users MIR

BIC: it is necessary to set a a threshold aimed at guaranteeing a separation between the MIR of
a “trusted” Subnet and the MIR of a Botnet.

Set an intermediate threshold (tuning parameter 0 < € < 1)

Phot < Pbot + €(psum — pbot)J < Psum
Threshold ~y
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The BotBusteralgorithm

Algorithm 1: B,.,=BotBuster

N={1,2,-.-,N}; @new=0;
for by € N do

3={bo};

for j e N\ {by} do

if 5(B U {j}) < 7(B,{s}) then
T B=BU0U%

¢ normal end

end

@ bot if |B| > max(1, [Bpew|) then
| Brew = B;

end

end
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Set 1 as pivot




The BotBusteralgorithm

Algorithm 1: @ne“,:BotBuster

N = {1,2,...,N}; ﬁnew =0;
for IZO € N do
B = {bo};
for j € th\ {bo} do )
if 5(B U {j}) < 7(B, {j}) then
| B=BU{}:
¢ normal end

_________ end
e T . | @bot i [B] > max(1, [Buey|) then

// AN
{\ ) | Buew = B;
g ’ end

————————————— end
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‘ Not botnet
5




The BotBusteralgorithm

Algorithm 1: @ne“,:BotBuster

¢ normal

@ bot
2

— -~o

S~ -

N={1,2,...,N}; Bpew = 0;
for 120 € N do
B = {bo};
for j € N\ {by} do
if 5(B U {j}) < (B, {j}) then
| B=BUk
end
end
if | B| > max(1, |Bpew|) then
| 'ﬁnew = ﬁ;
end
end

Not botnet
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The BotBusteralgorithm

Algorithm 1: @new=BotBuster

¢ normal

@ bot
2
3

.

N={1,2,...,N}; Boew = 0;
for IZO € N do
B = {bo};
for j € N\ {by} do
if 5(B U {5}) <7(B,{4}) then
| 3=BU{k
end
end
if |B| > max(1, |Bpey|) then
| ﬂnew = @;
end

end

Not botnet
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The BotBusteralgorithm

Algorithm 1: @new=BotBuster

¢ normal

@ bot

-

S~ ——

N=1{1,2,...,N}; Boew = 0;
for IZO € N do
B = {bo};
for j € N'\ {bo} do
if 5(B U {3}) < (8, {j}) then
| 3=BU{k
end
end
if |B| > max(1, |Byew|) then
| ﬁnew = é;
end

end

Not botnet
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The BotBusteralgorithm

Algorithm 1: ﬁnew=BotBuster

N={1,2,...,N}; Brew = 0;
for IZO € N do
B = {bo};
for j € N\ {bo} do
if 5(B U {j}) < (B, {4}) then
| B =BUik
¢ normal end

end

® bot if |B| > max(1, [Buew|) then
| 3new = 3;

end

end
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. Estimate

declared normal




The BotBusteralgorithm

Algorithm 1: @ne‘.,:BotBuster
N= {l,z,...,N}; ﬁnew =0;

o
(S

o

for Ifo € N do 5

B ={bo}; S

for j e N\ {by} do =

it 5(B U {5}) < 7(B,{7}) then :

| B=BU{}: =

¢ normal end t
end X o

‘ bot if |B| > max(1, Bnew|) then =
| 3new = 3; =

end a

end o

T

=

Set 2 as pivot




The BotBusteralgorithm

Algorithm 1: ﬁnew=BotBuster

- -

S~ -

() normal

@ bot

N={1,2,...,N}; Buew = 0;
for IZO € N do
B = {bo};
for j € N'\ {bo} do
if 5(BU {j}) < (8, {j}) then
| 3=3U{k
end
end
if |B| > max(1, [Byew|) then
’ Buew = B;
end
end

Not botnet
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The BotBusteralgorithm

Algorithm 1: @nc‘.,:BotBuster

. ¢ normal

@ bot

- -

S~ -

N={1,2,...,N}; Boew = 0;
for IZO € N do
B = {bo};
for j € N\ {bo} do
if 5B U {j}) < (8, {j}) then
| B=BU{}
end
end
if |B| > max(1, |Bpew|) then
| @new = ﬁ;
end
end

Not botnet
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The BotBusteralgorithm

Algorithm 1: @new=BotBuster

‘ ( normal

@ bot

- ~~

N={1,2,...,N}; Buew = 0;
for IZO € N do
B = {bo};
for j € N\ {bo} do
if 5B U {3}) < (B, {j}) then
| B=BU{k
end
end
if |B| > max(1, [Byew|) then
| Buew = B;
end

end

2 and 4 bots
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The BotBusteralgorithm

Algorithm 1: Bj,=BotBuster

N={12,...,N}; Bew = 0;
for Izo € N do
3 = {bo};
for j € N\ {b} do
it p(BU {j}) < (B, {5}) then
| B =BUi)

end

‘ @ normal end )
if |B| > max(1,|Bpew|) then
@ bot | Buew =B;

end
end
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The BotBusteralgorithm

Algorithm 1: @ne\,,:BotBuster
N= {1,2,...,N}; @new =ﬂ;

o
C
o
for IZO € N do 8
B = {bo}; S
for j € N'\ {bo} do g
if 5(BU{j}) <~(B,{j}) then g
| B=3U{k 2
end :I>
‘ ¢ normal end A ]
if |$,.| > ma"f(la |3new|) then (30
@ bot | Boew = B; ke
end =
end o)
o
3 =
estimated botnet Estimate
@ @ 6




Performance indices

E[|I§(t) N B|] Expected fraction of correctly banned users. §
Mbot (t) = 1B We wantn,,:(t) = 1 as t goes to infinity §
|
s
g
~ Expected fraction of incorrectly banned users.
Nnor (t) = E[IB®) n (N\B)]] We want 1, (t) = 0 as t goes to infinity

IN\B|




BotBuster applied toreal data

a =10, e = 0.2, for different botnet sizes

1 B (:

 Fraction of banned users as a
T . function of time, for different
Solid curves: | N botnet sizes
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II. Analytical Model of Cyber-Threat Propagation

* Adoption of Birth-Death-Immigration model originally proposed by
Kendall*in 1948

Birth Rate (A): represents the number of hosts infected by another
infected host per unit time (internal infection rate)

Death Rate (u): represents the number of “cured hosts” per unit time

Immigration Rate (v): represents the number of hosts directly infected
by original source per unit time (external infection rate)

* The Mitigation Strategy: solution of an optimal resource allocation
problem, by injecting the optimal curing vector u

Two cases:
Vectors A and v perfectly known = exact solution
Vectors A and v unknown = Maximum Likelihood Estimation (MLE)

1. D.G. Kendall, “On some modes of population growth leading to R.A. Fischer’s
logarithmic series distribution,” Biometrika, vol. 35,n°1/2, pp. 6-15, May 1948.
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II. Analytical Model of Cyber-Threat Propagation
% Primary
Source

Subnet 2

Subnet 1 Subnet N

(A2, v5) (AN, VN)

(A, vy) T .
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o
o
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.
.

.
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1. N subnets (each subnet is susceptible to a specific threat)

2. The random process associated to the no. of sick nodes infected by the primary
source is modeled by a Poisson counting process with rate v

3. The random process associated to the no. of sick nodes infected by secondary
source is modeled by a Poisson counting process with rate 1
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Operational Regimes

Motivation: In the proposed threat propagation model, each infected node
acts as a new (secondary) source of infection. The balance between
infection and curing processes can originate various operational regimes

Definitions and adopted formalisms

(t) — Number of infected nodes (state) at time t

( ) é [ ( ) — ’n,] ——— Prob. distrib. of number of infected nodes

\If( ) ]E[eml(t)] — Moment Generating Function (MGF) of /(t) at time t

A= X\—yp, p= N, n=v/X —— Normalized indicators
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Operational Regimes

Statistical characterization of I(t)

Key Idea: For the B-D-1 model, it is possible to find a closed-form solution
for the MGF and, then, for the corresponding probability distribution

0T 0T

The MGF of /(t) obeys to
— ta(r) — =
ot +alz) ox

b(x) v this first order p.d.e.

A
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a(z) = A1 —e")+pl—e™), bx)=v(e”—1)

1 — T n+mno 1 — Q eT no
U(z;t) = 1 - 1 _a . —
— Tt € —qt n, is the initial number

of infected nodes




4 )

A seq. X1,X,,...,X,, of real-valued r.v. is said to
= - converge in distribution to rv. X if:
Asymptotic Regimes lim £, () = FOO)
(for all x € R at which F is continuous)
. L - J
Statistical characterization of I(t) T

Key Idea: the convergence of MGF implies the convergence in distribution

Negative binomial

/ Random Variable
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d . (stable case)

I(t) t_> ‘/%(777:0), if p <1,
—00
Unit-scale Gamma
I(t) ; - Random Variable
y : — (unstable case)
q > Generic
I(t)e At s o p,mg), ifp>1 Random Variable S8
( ) t—o0 (77 p 0) P (strongly unstable

case)




Optimal Resource Allocation

Key Idea: Given “infection parameter vectors” 4 and v, we are interested in
allocating the optimal “curing vector” u. Ideally, we would to solve the
following Optimization Problem:

N
' Iy(t) s.t. <
mﬁnezzl (1) Z,uz_

C represents the available curing capacity that determines two regimes:
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N

z A; > C — global infection rate greater than the available capacity

=1

N

z L<C — global infection rate smaller (or equal) than the available capacity

=1




Optimal Resource Allocation

Numerical Results

03k N° of infected nodes spreading o
across N=3 subnets. <
S =
Q vk
2 X = [0.104,0.052, 0.017]
~
- v = [0.104,0.157,0.069] g
Q 102} 5
<+~
0 C=08Y A :
= = 0.8 =1 Ae =
= =
kS Case 1: '(D;
5 ’ : : N E
S 10l — Optim. with known par. | Ze—l Ao > C S
g ,’ —— Optim. with est. par. ] a
Z. Y = = Theoretical (before optim.) 3
— = Theoretical (optim. with known par.) | |
— = Theoretical (optim. with est. par.)
10° ! ! ! ! . The optimization procedure focuses on

0 20 40 60 80 100 120 mitigating the threat (exp) growth rate
Time [min]

C.C. Zou, W. Gong, D. Towsley, Code Red Worm Propagation modeling and analysis, IEEE/ACM Transactions on Networking, Vol. 13, n°5,
Oct.05, pp. 961-974




Optimal Resource Allocation

Numerical Results

N° of infected nodes spreading
across N=3 subnets.

A = [0.104,0.052, 0.017]
v = [0.104, 0.157, 0.069]

—_
o
N

C =110 N

Case 2:
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— Optim. with known par. :
— Optim. with est. par. :
— = Theoretical (optim. with known par.) | |

= = Theoretical (optim. with est. par.)
100 L L L L L 1 . . . The optimization procedureisableto

Number of Infected Nodes

0 50 100 150 200 250 300 350 400 450 500  guyaranteethe stability of threatgrowth
Time [mln] (exp.divergence prevention)




Conclusions

1. Conceptualization of a randomized distributed network attack along
with mitigation strategies.

Ongoing work: cluster of botnets that completely/partially share
emulation dictionaries

2. Characterization of threat propagation phenomenon by means of
Kendalls’ B-D-I- model with optimal curing solution tested over
simulated data

Ongoing work: formulation of the adversarial problem through Game
Theory framework
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