Radio Access for Internet of Things Traffic in Fifth-Generation Cellular Networks

MARCO CENTENARO

POSTDOCTORAL RESEARCH FELLOW

DEPARTMENT OF INFORMATION ENGINEERING

UNIVERSITY OF PADOVA, ITALY

Table of Contents

- 1. Self-presentation
- 2. Motivation of the research
- 3. Radio access protocols description and evaluation
- 4. Conclusions and ways forward

Marco Centenaro

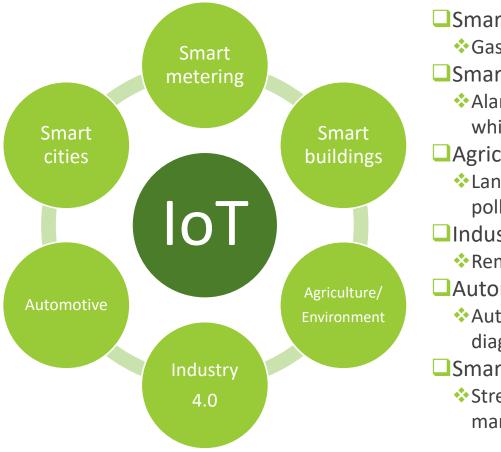
PhD student from Nov. 2014 until Oct. 2017 @ UniPD

□Nokia Bell Labs Stuttgart intern (Sep.-Dec. 2016)

□Yokohama National University visiting researcher (Jan.-Jul. 2017)

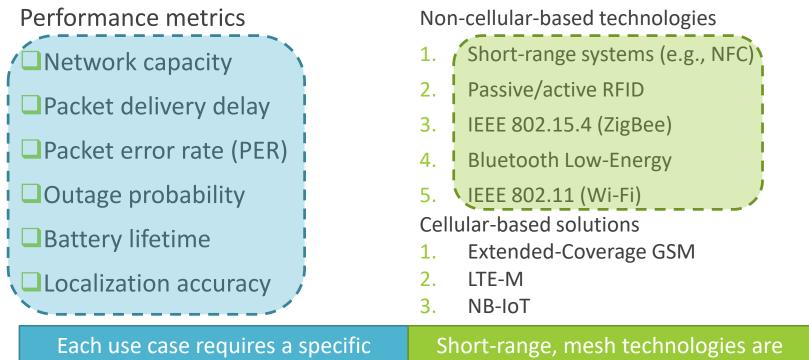
PhD defense passed in Mar. 2018

□ Title of the PhD thesis: On the Support of Massive Machine-to-Machine Traffic in Heterogeneous Networks and Fifth-Generation Cellular Networks


PhD supervisor: Prof. Lorenzo Vangelista

Referees: Prof. C. Fischione (KTH) and Prof. C. Stefanovic (Aalborg University)

Since Nov. 2017, postdoctoral research fellow @ UniPD


Channel-state information signaling reduction in FDD cellular systems (funded by Huawei)

IoT Use Cases

Smart metering ♦ Gas metering, water metering Smart buildings Alarm systems, HVAC, access control, white goods Agricultural/Environment Land/environment monitoring, pollution monitoring, animal tracking Industry 4.0 Remote control, asset tracking Automotive Autonomous driving, remote diagnostics Smart cities Streetlights, parking, waste management, ITS

In Order to Deploy an IoT...

combination of performance metrics!

Short-range, mesh technologies are suitable for small-size, localized IoT!

To support massive machine-type communication (mMTC) effectively, we must maximize flexibility and minimize complexity!

A New Trend: Long-Range IoT

IOT ON CELLULAR NETWORKS IOT ON LORA

PROS

- 1. Universal coverage
- 2. Quality of Service (QoS)

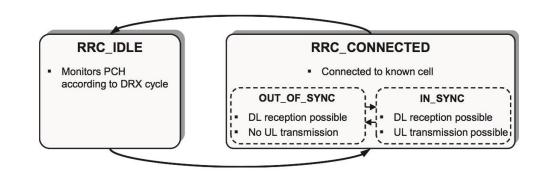
PROS

- 1. Ready for the market
 - Extremely cheap end devices

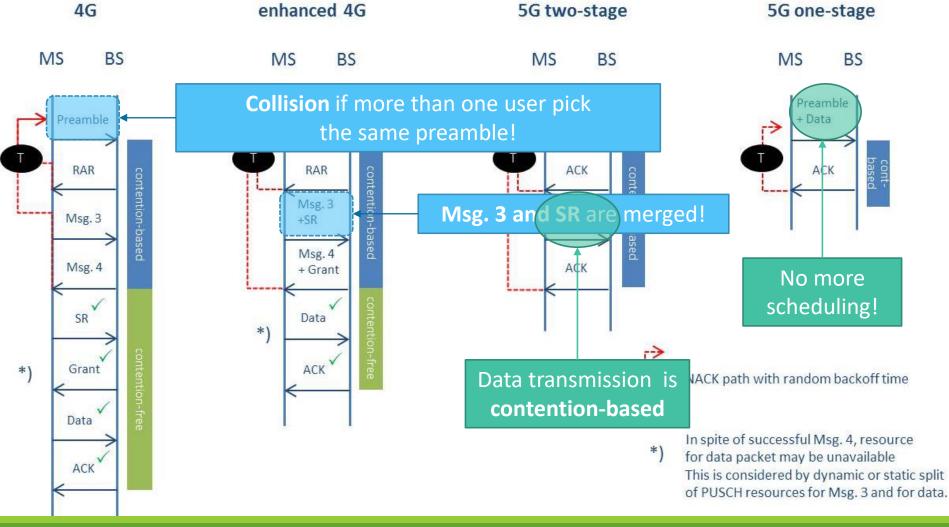
In this presentation, we will

- 1. focus on cellular networks
- 2. analyze the **performance** of various radio access protocols
- 3. propose enhancements to boost capacity
 - iviassive number of arrivals may overload the access network
 - Excessive signaling and delay to establish a connection

- Basic radio access protocol
- 2. Constrained in terms of duty cycle and transmit power


Problem Statement

The **4G radio access protocol** is not suited for IoT, because this kind of traffic is


infrequent (focusing on the single terminal)

🔲 uplink-dominant

involves a huge amount of terminals

After transmitting a packet in uplink, the IoT terminal switches from RRC_CONNECTED to RRC_IDLE, losing the synchronization with the eNB and generating a lot of signaling to re-establish the connection.

Comparison of radio access protocols for IoT on cellular networks

The *stair* must be reduced, trading collision-free data transmission with lower delay and reduced control overhead

Contribution

Analytical models to evaluate the various protocols in terms of

Throughput

Outage probability

Average delivery delay

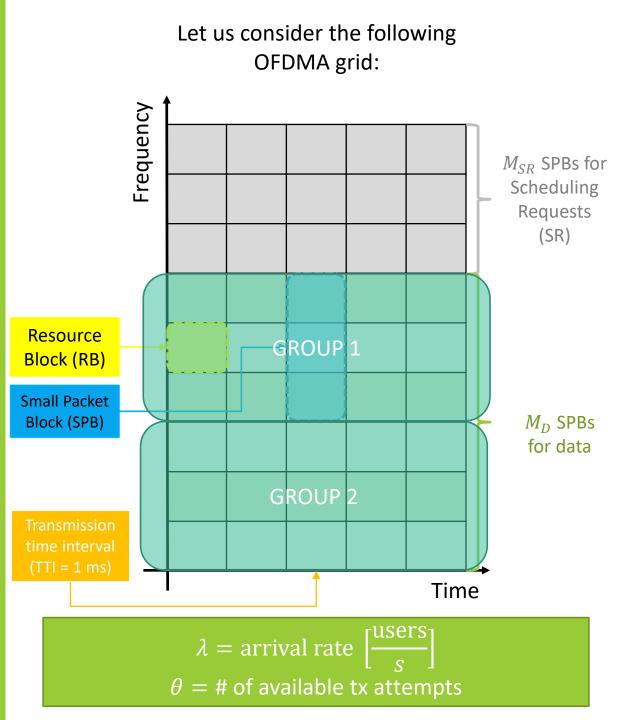
Ingredients for the analysis

Probability theory

Queueing theory

Publications

M. Centenaro, L. Vangelista, S. Saur, A. Weber, and V. Braun, Comparison of collision-free and contention-based radio access protocols for the Internet of Things, IEEE Trans. on Commun., vol. 65, no. 9, pp. 3832-3846, Sept. 2017.


M. Centenaro and L. Vangelista, Analysis of small packet traffic support in LTE, in Proc. Wireless Telecommun. Symp. (WTS), Chicago, IL, US, Apr. 2017, pp. 1-8.

S. Saur and M. Centenaro, Radio access protocols with multi-user detection for URLLC in 5G, in Proc. European Wireless Conf., Dresden, Germany, May 2017, pp. 1-6.

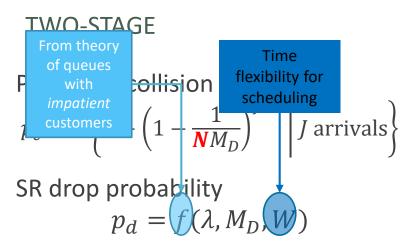
Mathematical Model: Preliminaries

Definitions

- SPB: a group of *J* RBs
- Number of SPBs $M = M_{SR} + M_D$
- Overprovisioning: for every data SPB, N preambles available for SRs
- Data SPBs grouping available

Mathematical Model: Sketch

ONE-STAGE

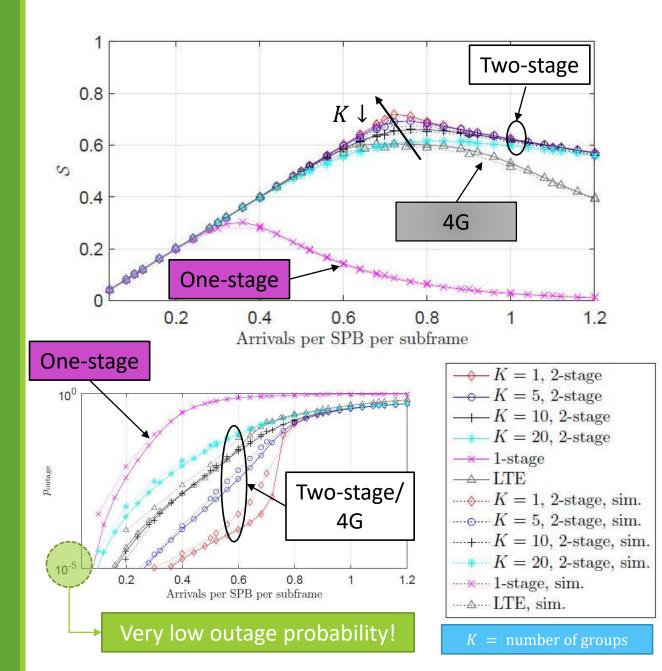

Data SPB collision probability

$$p_{c} = \mathbb{E}\left\{1 - \left(1 - \frac{1}{M_{D}}\right)^{J-1} \middle| J \text{ arrivals}\right\}$$
$$\cong 1 - \left(1 - \frac{1}{M_{D}}\right)^{\Delta - 1},$$

where Δ is the average number of arrivals in a subframe.

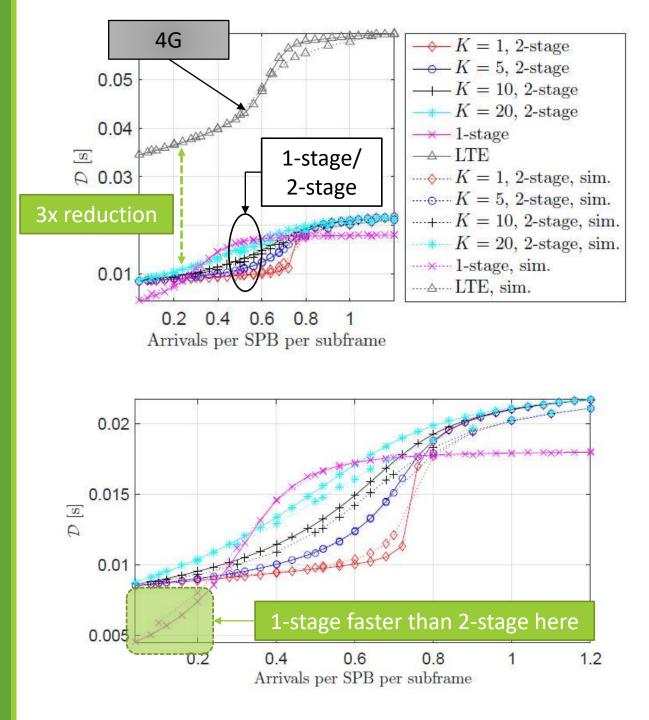
Failure probability

$$p_f = p_c$$


Failure probability

$$p_f = 1 - (1 - p_c)(1 - p_d)$$

Performance metrics $p_{outage} = p_f^{\ \theta}$ $S = \lambda(1 - p_{outage})$


Performance Evaluation: Throughput and Outage

- 2-stage yields a throughput increase with respect to 4G
- 1-stage becomes unstable soon
- Low outage probability can be obtained!
- Mathematical model and simulations are cross-validated
- No grouping (K = 1) provides the highest throughput

Delay

- Huge delay reduction
- For low arrival rates, one-stage provides the fastest delivery

Observations

ONE-STAGE VS 4G

PROS

□Very fast packet delivery

CONS

□ High collision probability

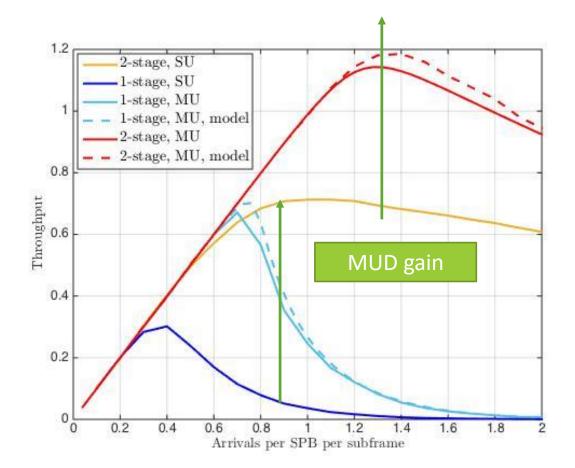
Difficult coexistence with scheduled transmissions TWO-STAGE VS 4G

PROS

Higher throughput

Reduction of downlink feedback

CONS


Longer latency than 1-stage

Impact of Multi-User Detection

Exploiting *multi-user detection* algorithms at the eNB yields a massive performance improvement, that is, a network capacity increase.

MUD is based on successive interference cancelation, thus it is computationally demanding, however, it is performed at the eNB side: **no further burden at the mobile terminals**.

The design of the extended mathematical models is a work in progress.

Radio Access for Internet of Things Traffic in Fifth-Generation Cellular Networks

MARCO CENTENARO

POSTDOCTORAL RESEARCH FELLOW

DEPARTMENT OF INFORMATION ENGINEERING

UNIVERSITY OF PADOVA, ITALY

BACKUP

Queueing Theory

Queues With Impatient Customers

The data transmission phase is modeled as a queueing system in which the *customers* (the SRs) are *impatient*: the maximum waiting time is τ . The long-term fraction of customers that leave the queue is

$$p_d = \frac{(1-\rho)\rho\Omega}{1-\rho^2\Omega}$$

where $\Omega = e^{-\mu(1-\rho)\tau}$ $\mu = \frac{M_D}{\delta_{RAO}}$ is the service rate, δ_{RAO} is the time interval between two SR SBPs $\rho = \frac{\lambda_A}{\mu}$ is the load factor, λ_A = rate of activated SRs [SR/s] $\tau = W \delta_{RAO}$ is the maximum waiting time

Preamble collision probability

$$p_{c} = \mathbb{E}\left\{1 - \left(1 - \frac{1}{54}\right)^{J-1} \middle| J \text{ arrivals}\right\}$$
Preambles in 4G
Connection request (Msg.3) drop probability
$$p_{d}^{CR} = f(\lambda, n_{CR}, W_{RAR})$$
RBs for connection requests
$$p_{d} = f(\lambda, p_{d}^{CR}, M_{D}, T_{SR})$$
Failure probability
$$p_{f} = 1 - (1 - p_{c})(1 - p_{d}^{CR})(1 - p_{d})$$