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Abstract

The emergence of new pervasive wearable technologies such as action cameras and
smart glasses, brings the focus of Computer Vision research to the so called First Person
Vision (FPV), or Egocentric Vision. Nowadays, more and more everyday-life videos
are being shot from a first-person point of view, overturning the classical fixed-camera
understanding of Vision, specializing the existing knowledge of video processing from
moving cameras and bringing new challenges in the field. The trend in research is al-
ready oriented towards a new type of Computer Vision, centred on moving sensors and
driven by the need for new applications for smart wearable devices. More in detail, the
simple realization that we often look at our hand, even while performing the simplest
tasks in everyday life, motivates recent studies in hand-related inference methods.

Indeed, this thesis investigates hand-related methods, as a way for providing new func-
tionalities to wearable devices. Inspired by a detailed state-of-the-art investigation, a
unified hierarchical structure is proposed, that optimally organizes processing levels to
reduce the computational cost of the system and improve its performance. Such struc-
ture borrows some concepts from the theory of Cognitive Dynamic Systems. The central
body of the thesis consists then in a proposed approach for most of the levels sketched
in the global framework proposed1.

1This thesis summarizes the effort of a three-year PhD and the results presented are the outcome of a deep
collaboration with my research group. For this reason I am mostly using plural statements ("we"), since much
of my work has strongly relied on my colleagues’ cooperation.

II
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Chapter 1

Introduction

First Person Vision (Egocentric) video analysis stands nowadays as one of the emerging
fields in computer vision. The availability of wearable devices, recording exactly what
the user is looking at, is ineluctable and the opportunities and challenges carried by this
kind of devices are broad. Particularly, for the first time a device is so intimate with the
user to be able to record the movements of his hands, making hand-based applications
for First Person Vision one the most promising area in the field.

1.1 Motivation and context

Portable head-mounted cameras, able to record dynamic high quality first-person videos,
have become a common item among sportsmen over the last five years. These devices
represent the first commercial attempts to record experiences from a first-person per-
spective. This technological trend is a follow-up of the academic results obtained in
the late 1990s, combined with the growing interest of the people to record their daily
activities. Up to now, no consensus has yet been reached in literature with respect to
naming this video perspective. First Person Vision (FPV) is arguably the most com-
monly used, but other names, like Egocentric Vision or Ego-vision has also recently
grown in popularity. The idea of recording and analyzing videos from this perspective
is not new in fact, several such devices have been developed for research purposes over
the last 15 years [145, 156, 154, 97, 29]. Figure 1-1 shows the growth in the number
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Figure 1-1: Number of articles per year directly related to FPV video analysis. This plot
contains the articles published until 2014, to the best of our knowledge

of articles related to FPV video analysis between 1997 and 2014. Quite remarkable is
the seminal work carried out by the Media lab (MIT) in the late 1990s and early 2000s
[214, 215, 196, 197, 212, 9], and the multiple devices proposed by Steve Mann who,
back in 1997 [144], described the field with these words:

“Let’s imagine a new approach to computing in which the apparatus is
always ready for use because it is worn like clothing. The computer screen,
which also serves as a viewfinder, is visible at all times and performs multi-
modal computing (text and images)”.

Recently, in the awakening of this technological trend, several companies have been
showing interest in this kind of devices (mainly smart-glasses), and multiple patents
have been presented. Figures 1-2(a) and 1-2(b) shows the devices patented in 2012 by
Google and Microsoft. Together with its patent, Google also announced Project Glass,
as a strategy to test its device among a exploratory group of people. The project was
introduced by showing short previews of the Glasses’ FPV recording capabilities, and
its ability to show relevant information to the user through the head-up display.
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(a) Google glasses (U.S. Patent D659,741 -
May 15, 2012).

(b) Microsoft augmented reality glasses (U.S.
Patent Application 20120293548 - Nov 22,
2012).

Figure 1-2: Examples of the commercial smart patents. (a) Google patent of the smart-
glasses; (b) Microsoft patent of an augmented reality wearable device.

Remarkably, the impact of the Glass Project (wich the most significant attempt to com-
mercialize wearable technology up to date) is to be ascribed not only to its hardware,
but also to the appeal of its underlying operating system. The latter continues to bring a
large group of skilled developers, thus in turn making a significant boost in the number of
prospective applications for smart-glasses, a phenomenon that has happened with smart-
phones several years ago. On one hand, the range of application fields that could benefit
from smart-glasses is wide and applications are expected in areas like military strat-
egy, enterprise applications, tourist services [200], massive surveillance [148], medicine
[111], driving assistance [135], among others. On the other hand, what was until now
considered as a consolidated research field, needs to be re-evaluated and restated under
the light of this technological trend: wearable technology and the first person perspec-
tive rise important issues, such as privacy and battery life, in addition to new algorithmic
challenges [170].

1.2 Research contribution

The major research contributions of this work can be summarized as follows:

∙ A detailed and comprehensive review of the evolution of First Person Vision meth-
ods, together with a categorization of the latters and a discussion of challenges
and opportunity within the field.

∙ A global framework for hand-related ego-vision methods: we propose a basic
hierarchical structure, and how to extend it in order to provide wearable systems’

3



inference with cognitive functionalities.

∙ Some levels of the proposed framework are fully investigated at algorithmic level,
namely:

– Hand detection level: a classifier for dynamically detecting hands’ presence
in frames.

– Hand segmentation level: a pixel-wise segmenter based on colour; a su-
perpixel algorithm for segmentation; a framework for optimizing superpixel
methods in videos.

– Hand identification level (left-right): an identification algorithm based on a
position-angle model.

– Hand pose recognition level: a pose classification algorithm based on a
graph representation of hands.

1.3 Thesis outline

This thesis is comprised of eight chapters, most of which are based on a number of
peer-reviewed journals, conference and workshop papers. Each chapter is intended to
serve as a stand-alone technical textbook, and, although being not completely detached
from the rest of the thesis, sometimes re-introduces relevant concepts needed to gain a
comprehensive insight into the topics it discusses, along with the corresponding bibliog-
raphy. The main exception is represented by chapter 3, which provides the big picture
of the global framework we introduce and thus includes several references to the other
chapters.

The thesis is organized as follows:

Chapter 2 gives a background on First Person Vision and a detailed review of literature,
which forms the base for the proposed framework. Particular stress is given to the evolu-
tion of technology, namely wearable devices. A categorization of algorithms, tasks and
objectives is proposed in order to provide the reader with a well focused insight on the
field. Eventually, a thorough investigation of existing datasets is presented.

Chapter 3 shifts the focus over hand-related First Person Vision. The justification of this
interest lies in the fact that hands are almost always in our field of view, and are involved
in the majority of everyday task. They are in fact one of the fundamental means we

4



employ to interact with the surrounding world and may thus represent a goods starting
point for implementing context-aware functionalities and human-computer interfaces on
wearable devices. A global hierarchical structure for hand-related computer vision meth-
ods is devised and justified. In addition, the framework of Cognitive Dynamic Systems
is introduced and fused with the proposed approach as a way to provide a flavour of
cognitive functionalities to wearable devices.

Chapter 4 addresses the lower level of the proposed hierarchy i.e. the detection step.
This levels is intended to answer the question: are there hands in the current frame? The
yes/no nature of the question makes a binary classification approach the most suitable
to give an answer. The algorithm proposed relies on a SVM classifier which is fed with
HOG features extracted by the current frame. A temporal smoothing process is also
applied at the decision level by exploiting the mathematical formulation of the SVM.

Chapter 5 describes the second level of the hierarchy, namely the segmentation level.
Once the answer is yes at the lower level, this module is asked the question: where are
hands located?. This step is often (con)fused with the previous one but in fact performs
a different task.The problem can be seen as a local (pixel-level) binary classification
problem, and as such is first addressed in section 5.1. Section 5.2 revises the notion of
local by introducing the concept of Superpixel, and proposes a novel algorithm together
with a video optimization method for this class of methods.

Chapter 6 address the problem of giving segmented blobs a left-right id. This is accom-
plished by fitting the segmentation results with ellipses and by making them compete
against a left and a right model. In case hand-to-hand occlusion is detected, this mod-
ule is able to cope with it by splitting the fused blob using past segmentation results
(disambiguation). Hand identification is performed after segmentation, however, since
disambiguation is sometimes needed, the two levels are exchanging valuable informa-
tion.

Chapter 7 investigates the hand pose problem, as the base for gesture recognition tasks.
Typical hand poses can be recognized in a multi-class classification framework. The
proposed algorithm relies on a graph representation of hands, which is in turn made
possible by the fitting capabilities of a particular Neural Gas. A Laplacian representation
of the graph provides discriminative features for hand pose classification.

Eventually, chapter 8 concludes the thesis, summarizing the most important concepts,
highlighting major findings, drawing conclusions and sketching limitation of the work
done that could be explored in the future.
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Chapter 2

Background and Related Work

This chapter summarizes the state of the art in FPV video analysis and its temporal evo-
lution between 1997 and 2014, analyzing the challenges and opportunities of this video
perspective. It reviews the main characteristics of previous studies using tables of refer-
ences, and the main events and relevant works using timelines. As an example, Figure
2-1 presents some of the most important papers and commercial announcements in the
general evolution of FPV. We direct interested readers to the must read papers presented
in this timeline. In the following sections, more detailed timelines are presented accord-
ing to the objective addressed in the summarized papers. The categories and conceptual
groups presented in this chapter reflects a schematic perception of the field coming from
a detailed study of the existent literature. We are confident that the proposed categories
are wide enough to conceptualize existent methods, however due to the growing speed
of the field they could require future updates. As will be shown in the coming sections,
the strategies used during the last 20 years are very heterogeneous. Therefore, rather
than providing a comparative structure between existing methods and features, the ob-
jective of this chapter is to highlight common points of interest and relevant future lines
of research. The bibliography presented in this chapter is mainly in FPV. However, some
particular works in classic video analysis are also mentioned to support the analysis.
The latter are cited using italic font as a visual cue1.

To the best of our knowledge, the only work summarizing the general ideas of the FPV
is [110], which presents a wearable device and several possible applications. Other

1The literature overview presented in this chapter has been published as a survey paper in [22]
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related reviews include the following: [91] reviews the activity recognition methods with
multiple sensors; [62] analyzes the use of wearable cameras for medical applications;
[154] presents some challenges of an active wearable device.

In the remainder of this chapter, existent methods in FPV are summarized according to
a hierarchical structure proposed, highlighting the more relevant works and the temporal
evolution of the field. Section 2.1 introduces general characteristics of FPV and the
hierarchical structure, which is later used to summarize the current methods according
to their final objective, the subtasks performed and the features used. In section 2.2 we
briefly present the publicly-available FPV datasets. Finally, section 2.3 discusses some
future challenges and research opportunities in this field.

2.1 First Person Vision (FPV) video analysis

During the late 1990s and early 2000s, the advances in FPV analysis were mainly per-
formed using highly elaborated devices, typically proprietarily developed by different
research groups. The list of devices proposed is wide, where each device was usually
presented in conjunction with their potential applications and a large array of sensors
which only envy from modern devices in their design, size and commercial capabilities.
The column “Hardware” in Table 2.2 summarizes these devices. The remaining columns
of this table are explained in section 2.1.1. Nowadays, current devices could be consid-
ered as the embodiment of the futuristic perspective of the already mentioned pioneering
studies. Table 2.1 shows the currently available commercial projects and their embedded
sensors. Such devices are grouped in three categories:

∙ Smart-glasses: Smart-glasses have multiple sensors, processing capabilities and
a head-up display, making them ideal to develop real time methods and to improve
the interaction between the user and its device. Besides, smart-glasses are nowa-
days seen as the starting point of an augmented reality system. However, they
cannot be considered a mature product until major challenges, such as battery
life, price and target market, are solved. The future of these devices is promising,
but it is still not clear if they will be adopted by the users on a daily basis like
smartphones, or whether they will become specialized task-oriented devices like
industrial glasses, smart-helmets, sport devices, etc.

∙ Action cameras: commonly used by sportsmen and lifeloggers. However, the
research community has been using them as a tool to develop methods and algo-
rithms while anticipating the commercial availability of the smart-glasses during

7



x[1
44

]S
te

ve
M

an
n

pr
es

en
ts

so
m

e
ex

pe
rim

en
ts

w
ith

w
ea

ra
bl

e
de

vi
ce

s.

x [2
14

]M
ed

ia
La

b
(M

IT
)i

llu
st

ra
te

s
th

e
po

te
nt

ia
lo

fF
P

V
pl

ay
in

g
“P

at
ro

l”
(a

re
al

sp
ac

e-
tim

e
ga

m
e)

x

[1
56

]E
xp

lo
re

s
th

e
ad

va
nt

ag
es

of
ac

tiv
e

w
ea

ra
bl

e
ca

m
er

as

x

[1
27

]S
ho

w
s

th
e

st
ro

ng
re

la
tio

ns
hi

p
be

tw
ee

n
ga

ze
an

d
FP

V.

x

[9
7]

M
ic

ro
so

ft
R

es
ea

rc
h

re
le

as
es

th
e

S
en

se
C

am
.

x

G
oP

ro
H

er
o

re
le

as
e

x

G
oo

gl
e

re
le

as
es

th
e

G
la

ss
P

ro
je

ct
to

a
lim

ite
d

nu
m

be
ro

fp
eo

pl
ex

[1
47

]B
rie

fs
um

m
ar

y
of

th
e

de
vi

ce
s

pr
op

os
ed

by
S

et
ev

e
M

an
n.

19
97I

19
98I

19
99I

20
00I

20
01I

20
02I

20
03I

20
04I

20
05I

20
06I

20
07I

20
08I

20
09I

20
10I

20
11I

20
12I

20
13I

20
14I

Fi
gu

re
2-

1:
So

m
e

of
th

e
m

or
e

im
po

rt
an

tw
or

ks
an

d
co

m
m

er
ci

al
an

no
un

ce
m

en
ts

in
FP

V.

8



the coming years. Action cameras are becoming cheaper, and are starting to ex-
hibit (albeit still somewhat limited) processing capabilities.

∙ Eye trackers: have been successfully applied to analyze consumer behaviors in
commercial environments. Prototypes are available mainly for research purposes,
where multiple applications have been proposed in conjunction with FPV. Despite
the potential of these devices, their popularity is highly affected by the price of
their components and the obtrusiveness of the eye tracker sensors, which is com-
monly carried out using an eye pointing camera.

Table 2.1: Commercial approaches to wearable devices with FPV video recording capa-
bilities
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Google Glasses 3 3 3 3 3 3 3 3 3

Epson Moverio 3 3 3 3 3 3 3

Recon Jet 3 3 3 3 3 3 3 3

Vuzix M100 3 3 3 3 3 3 3 3

GlassUp 3 3 3 3 3 3 3

Meta 3 3 3 3 3 3

Optinvent Ora-s 3 3 3 3 3 3 3 3

SenseCam 3 3 3 3 3 3 3

Lumus 3 3 3 3 3 3

Pivothead 3 3

GoPro 3 3 3

Looxcie camera 3 3

Epiphany Eyewear 3 3

SMI Eye tracking Glasses 3 3 3

Tobii 3 3 3

1 Other projects such as Orcam, Nissan, Telepathy, Olympus MEG4.0, Oculon and Atheer have been officially
announced by their producers but no technical specifications have been already presented.

2 According to unofficial online sources, other companies like Apple, Samsung, Sony, Oakley could be working
on their own versions of similar devices, however no information has been officially announced up to date.
Microsoft recently announced the Hololens but not technical specifications have been officially presented.

2 This data is created on January 2015.
3 In [110] one multi-sensor device is presented for research purposes.
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FPV video analysis gives some methodological and practical advantages, but also in-
herently brings a set of challenges that need to be addressed [110]. On one hand, FPV
solves some problems of the classical video analysis and offers extra information:

∙ Videos of the main part of the scene: Wearable devices allow the user to (even
unknowingly) record the most relevant parts of the scene for the analysis, thus
reducing the necessity for complex controlled multi-camera systems [71].

∙ Variability of the datasets: Due to the increasing commercial interest of the tech-
nology companies, a large number of FPV videos is expected in the future, making
it possible for the researchers to obtain large datasets that differ among themselves
significantly, as discussed in section 2.2.

∙ Illumination and scene configuration: Changes in the illumination and global
scene characteristics could be used as an important feature to detect the scene in
which the user is involved, e.g. detecting changes in the place where the activity
is taking place, as in [139].

∙ Internal state inference: According to [243], eye and head movements are directly
influenced by the person’s emotional state. As already done with smartphones
[27], this fact can be exploited to infer the user’s emotional state, and provide
services accordingly.

∙ Object positions: Because users tend to see the objects while interacting with
them, it is possible to take advantage of the prior knowledge of the hands’ and
objects’ positions, e.g. active objects tend to be closer to the center, whereas hands
tend to appear in the bottom left and bottom right part of the frames [180, 19].

On the other hand, FPV itself also presents multiple challenges, which particularly af-
fect the choice of the features to be extracted by low level processing modules (feature
selection is discussed in details in section 2.1.3):

∙ Non static cameras: One of the main characteristics of FPV videos is that cameras
are always in movement. This fact makes it difficult to differentiate between the
background and the foreground [87]. Camera calibration is not possible and often
scale, rotation and/or translation-invariant features are required in higher level
modules.

∙ Illumination conditions: The locations of the videos are highly variable and un-
controllable (e.g. visiting a touristic place during a sunny day, driving a car at
night, brewing coffee in the kitchen). This makes it necessary to deploy robust
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methods for dealing with the variability in illumination. Here shape descriptors
may be preferred to color-based features [19].

∙ Real time requirements: One of the motivations for FPV video analysis is its
potential of being used for real time activities. This implies the need for the real
time processing capabilities [160].

∙ Video processing: Due to the embedded processing capabilities (for smart-glasses),
it is important to define efficient computational strategies to optimize battery life,
processing power and communication limits among the processing units. At this
point, cloud computing could be seen as the most promising candidate tool to turn
the FPV video analysis into an applicable framework for daily use. However, a
real time cloud processing strategy requires further development in video com-
pressing methods and communication protocols between the device and the cloud
processing units.

The rest of this chapter summarizes FPV video analysis methods according to a hierar-
chical structure, as shown in Figure 2-2, starting from the raw video sequence (bottom)
to the desired objectives (top). Section 2.1.1 summarizes the existent approaches ac-
cording to 6 general objectives (Level 1). Section 2.1.2 divides these objectives in 15
weakly dependent subtasks (Level 2). Section briefly introduces the most commonly
used image features, presenting their advantages and disadvantages, and relating them
with objectives. Finally, section 2.1.4 summarizes the quantitative and computational
tools used to process data, moving from one level to the other. In the literature review
carried out, we found that existing methods are commonly presented as combinations
of the aforementioned levels. However, no standard structure is presented, making it
difficult for other researchers to replicate existing methods or improve the state of the
art. We propose this hierarchical structure as an attempt to cope with this issue.
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Level 1. Objectives

Level 2 - Subtasks

1. Object Recognition and Tracking, 2. 
Activity Recognition, 3. User-Machine 
Interaction, 4. Video Sumarization and 
Retrieval, 5. Environment Mapping, 6. 
Interaction Detection 

1. Background Substraction, 2. Object 
Identification, 3. Hand Detection, 4. People 
Detection, 5. Object Tracking, 6. Gesture 
Classification,    7. Activity Identification,     
8. Activity as Sequence Analysis, 9. User 
Posture Detection, 10. Global Scene 
Identification, 11. 2D-3D Scene Mapping, 
12. User Personal Interests, 13. Head 
Movement,                14. Gaze Estimation, 
15. Feedback Location

Methods and Algorithms

Level 3 - Features
1 Feature Point Descriptor, 2. Texture, 3. 
Image Motion, 4. Saliency, 5. Image 
Segmentation, 6. Global Scene 
Descriptors, 7. Contours 8. Colors, 9. 
Shape, 10. Orientantion

Pyramid search
Classifiers
Clustering

Regression
Temporal alignament

Tracking
Feature Encoding

SLAM
Graphic Probabilistic Models

Optimization
Common Sense

Figure 2-2: Hierarchical structure to explain the state of the art in FPV video analysis.
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2.1.1 Objectives

Table 2.2 summarizes a total of 117 articles. The articles are divided in six objectives
according to the main goal addressed in each of them. The left side of the table contains
the six objectives described in this section, and on the right side, extra groups related
to hardware, software, related surveys and conceptual articles, are given. The category
named ”Particular Subtasks“ is used for articles focused on one of the subtasks presented
in section 2.1.2. The last column shows the positive trend in the number of articles per
year, and is plotted in Figure 1-1.

Note from the table that the most commonly explored objective is Object Recognition
and Tracking. We identify it as the base of more advanced objectives such as Activity
Recognition, Video Summarization and Retrieval and Environment Mapping. Another
often studied objective is User-Machine Interaction because of its potential in Aug-
mented Reality. Finally, a recent research line denoted as Interaction Detection allows
the devices to infer situations in which the user is involved. Along with this section,
some details are presented of how existent methods have addressed each of these 6 ob-
jectives. One important aspect is that some methods use multiple sensors within a data-
fusion framework. For each objective, several examples of data-fusion and multi-sensor
approaches are mentioned.

Object recognition and tracking

Object recognition and tracking is the most explored objective in FPV, and its results are
commonly used as a starting point for more advanced tasks, such as activity recognition.
Figure 2-3 summarizes some of the most important papers that focused on this objective.

In addition to the general opportunities and challenges of the FPV perspective, this ob-
jective introduces important aspects to be considered: i) Because of the uncontrolled
characteristics of the videos, the number of objects, as well as their type, scale and point
of view, are unknown [180, 182]. ii) Active objects, as well as user’s hands, are fre-
quently occluded. iii) Because of the mobile nature of the wearable cameras, it is not
easy to create background-foreground models. iv) The camera location makes it possible
to build a priori information about the objects’ position [180, 19].

Hands are among the most common objects in the user’s field of view, and a proper
detection, localization, and tracking could be a main input for other objectives. The
authors in [19] highlight the difference between hand-detection and hand-segmentation,
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particularly in the framework of wearable devices where the number of deployed com-
putational resources, directly influences the battery life of the devices. In general, due
to the hardware availability and price, hand-detection and tracking is usually carried out
using RGB videos. However, [191, 192] uses a chest-mounted RGB-D camera to im-
prove the hand-detection and tracking performance in realistic scenarios. According to
[155], hand detection could be divided into model-driven and data-driven methods.

Model-driven methods search for the best matching configuration of a computational
hand model (2D or 3D) to recreate the image that is being shown in the video [199, 198,
186, 217, 191, 192]. These methods are able to infer detailed information of the hands,
such as the posture, but in exchange large computational resources, highly controlled
environments or extra sensors (e.g. Depth Cameras) could be required.

Data-driven methods use image features to detect and segment users’ hands. The most
commonly used features for this purpose are the color histograms looking to exploit the
particular chromaticism of human skin, especially in suitable color spaces like HSV and
YCbCr [160, 200, 131, 132]. Color-based methods can be considered as the evolution
of the pixel-by-pixel skin classifiers proposed in [106], in which color histograms are
used to decide whether a pixel represents human skin. Despite their advantages, the
color-based methods are far from being an optimal solution. Two of their more im-
portant restrictions are: i) The computational cost, because in each frame they have to
solve the 𝑂(𝑛2) problem implied by the pixel-by-pixel classification. ii) Their results
highly influenced by significant changes in illumination, for example indoor and outdoor
videos[19]. To reduce the computational cost, some authors suggest the use of super-
pixels [200, 160, 132], however, an exhaustive comparison of the computational times
of both approaches is still pending, and computationally efficient superpixel methods
applied to video (especially FPV video) are still at an early stage [161]. Regarding the
noisy results, the authors in [131, 200] train a pool of models and automatically select
the most appropriate depending on the current environmental conditions.

In addition to hands, there is an uncountable number of objects that could appear in front
of the user, whose proper identification could lead to development of some of the most
promising applications of FPV. An example is “The Virtual Augmented Memory(VAM)”
proposed by [68], where the device is able to identify objects, and to subsequently relate
them to previous information, experiences or common knowledge available online. An
interesting extension of the VAM is presented in [24], where the user is spatially located
using his video, and is shown relevant information about the place or a particular event.
In the same line of research, recent approaches have been trying to fuse information
from multiple wearable cameras to recognize when the users are being recorded by a
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third person without permission. This is accomplished in [183, 99] using the motion of
the wearable camera as the identity signature, which is subsequently matched in the third
person videos without disclosing private information such as the face or the identity of
the user.

The augmented memory is not the only application of object recognition. The authors in
[182] develop an activity recognition method which based only a list of the used objects
in the recorded video . Despite the importance of these applications, the problem of
recognition is far from being solved due to the large amount of objects to be identified as
well as the multiple positions and scales from which they could be observed. It is here
that machine learning starts playing a key role in the field, offering tools to reduce the
required knowledge about the objects [74] or exploiting web services (such as Amazon
Turk) and automatic mining for training purposes [208, 87, 18, 235].

Once the objects are detected, it is possible to track their movements. In the case of
the hands, some authors use the coordinates of center as the reference point [160], while
others go a step further and use dynamic models [119, 118]. Dynamic models are widely
studied and are successfully used to track hands, external objects [56, 42, 56, 43, 41], or
faces of other people [33].

Activity recognition

An intuitive step in the hierarchy of objectives is Activity Recognition, aimedat identify-
ing what the user is doing in a particular video sequence. Figure 2-4 presents some of
the most relevant papers on this topic. A common approach in activity recognition is to
consider an activity as a sequence of events that can be modeled as Markov Chains or
as Dynamic Bayesian Networks (DBNs) [214, 196, 50, 29, 218]. Despite the promising
results of this approach, the main challenge to be solved is the scalability to multiple
user and multiple strategies to solve a similar task.

Recently, two major methodological approaches for activity recognition are becoming
popular: object based and motion based recognition. Object based methods aim to infer
the activity using the objects appearing in video sequence [218, 70, 182], assuming of
course that the activities can be described by the required group of objects( e.g. prepare
a cup of coffee requires coffee, water and a spoon). This approach opens the door to
highly scalable strategies based on web mining to know the objects usually required
for different activities. However, after all, this approach depends on a proper Object
Recognition step and on its own challenges (Section 2.1.1). Following an alternative
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path, during the last 3 years, some authors have been using the fact that different kind
of activities create different body motions and as consequence different motion patterns
in the video, for example: walking, running, jumping, skiing, reading, watching movies,
among others [115, 171, 184]. It is remarkable the discriminative power of motion
features for this kind of activities and the robustness to deal with the illumination and
the color skin challenges.

Activity recognition is one of the fields that has drawn most benefits from the use of
multiple sensors. This strategy started growing in popularity with the seminal work of
Clarkson et al. [50, 51] where basic activities are identified using FPV video jointly
with audio signals. An intuitive realization of the multi-sensor strategy allows to re-
duce the dependency between Activity Recognition and Object Recognition, by using
Radio-Frequency Identification (RFID) tags in the objects [235, 123, 176, 181]. How-
ever, the use of RFIDs reduces the applicability to environments previously tagged. The
list of multiple sensors does not end with audio and RFIDs, it also contains Inertial Mea-
surement Units [210], multiple sensors of the “SenseCam2” [61, 37], GPS [87], and
eye-trackers [244, 72, 241, 240, 134].

User-machine interaction

As already mentioned, smart-glasses open the door to new ways for interaction between
the user and his device. The device, being able to give feedback to the user, allows to
close the interaction loop originated by the visual information captured and interpreted
by the camera. Only approaches related to FPV video analysis are presented (other
sensors are omitted, such as audio and touch panels), categorizing them based on two
approaches: i) the user sends information to the device, and ii) the device uses the infor-
mation of the video to show the feedback to the user. Figure 2-5 shows some of the most
important works concerning User-machine interaction.

In general, the interaction between the user and his device starts with intentional or unin-
tentional command. An intentional command is a signal sent by the user using his hands
through his camera. This kind of interaction is not a recent idea and several approaches
have been proposed, particularly using static cameras [190, 84], which, as mentioned in
section 2.1.1, can not be straightforwardly applied to FPV due to the mobile nature of
wearable cameras. A traditional approach is to emulate the mouse of computers with the
hands [186, 126, 124], allowing the user to point and click at virtual objects created in

2Wearable device developed by Microsoft Research in Cambridge with accelerometers, thermometer, in-
frared and light sensor
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the head-up display. Other approaches look for more intuitive and technology focused
ways of interaction. For example, the authors in [200] develop a gesture recognition
algorithm to be used in an interactive museum using 5 different gestures: “point out”,
“like”, “dislike”, “OK” and “victory”. In [248], the head movements of the user are
used to assist a robot in the task of finding a hidden object in a controlled environment.
Under this perspective some authors combine static and wearable cameras [121, 215].
Quite remarkable are the results of Starner in 1998, being able to recognize Ameri-
can signal language with an efficiency of 98% with a static camera and head mounted
camera. As is evident, hand-tracking methods can give important cues in this objective
[164, 211, 201, 119], and make it possible to use features such as position, speed or
acceleration of the users’ hands.

Unintentional commands are triggers activated by the device using information about the
user without his conscious intervention, for example: i) the user is cooking by following
a particular recipe (Activity Recognition), and the device could monitor the time of
different steps without the user previously asking for it. ii) The user is looking at a
particular item [Object Recognition] in a store [GPS or Scene Recognition] then the
device could show price comparisons and reviews. Unintentional commands could be
detected using the results of other FPV objectives, the measurements of its sensors, or
behavioural routines learned from the user while previously using his device, among
others. From our point of view, these kinds of commands could be the next step of user-
machine interaction for smart-glasses, and a main enabler to reduce the required time to
interact with the device [213].

Regarding the second part of the interaction loop, it is important to properly design the
feedback system to know when, where, how, and which information should be shown
to the user. In order to accomplish this, several issues must be considered in order
to avoid misbehaviour of the system that could work against the user’s performance in
addressing relevant tasks [59]. In this line, multiple studies develop methods to optimally
locate virtual labels in the user’s visual field, without occluding the important parts of
the scene [142, 223, 90].

Video summarization and retrieval

The main task of Video summarization and retrieval is to create tools to explore and
visualize the most important parts of large FPV video sequences [139]. The objective
and main issue is perfectly summarized in [5] with the following sentence: “We want
to record our entire life by video. However, the problem is how to handle such a huge
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data”. In general, existing methods define importance functions to select the more rele-
vant subsequences or frames of the video, and later cut or accelerate the less important
ones [172]. Recent studies define the importance function using the objects appearing
in the video [87], their temporal relationships and causalities [139], or as a similarity
function, in terms of its composition, between them and intentional pictures taken with
a traditional cameras [238]. A remarkable result is achieved in [115, 184] using motion
features to segment videos according to the activity performed by the user. This work
is a good example of how to take advantage of the camera movements in FPV, usually
considered as a challenge, to achieve good classification rates.

The use of multiple sensors is common within this objective, and remarkable fusions
have been made using brain measurements in [5, 169], gyroscopes, accelerometers, GPS,
weather information and skin temperature in [194, 98, 221], and online available pictures
in [238]. An alternative approach to video summarization is presented in [175] and [11],
where multiple FPV videos of the same scene are unified using the collective attention
of the wearable cameras as an importance function. In order to define whether the two
videos recorded from different cameras are pointing at the same scene, the authors in
[16] use superpixels and motion features to propose a similarity measurement. Finally,
it is significant to mention that “Video summarization and retrieval” has led to important
improvements in the design of the databases and visualization methods to store and
explore the recorded videos [85, 86]. In particular, this kind of developments can be
considered an important tool for reducing computational requirements in the devices, as
well as alleviate privacy issues related with the place where videos are stored.

Environment Mapping

Environment Mapping aims at the construction of a 2D or 3D virtual representation of
the environment surrounding the user. In general, the of variables to be mapped can be
divided in two categories: physical variables, such as walls and object locations, and
intangible variables, such as attention points. Physical mapping is the more explored
of the two groups. It started to grow in popularity with [56], which showed how, by
using multiple sensors, Kalman Filters and monoSLAM, it is possible to elaborate a
virtual map of the environment. Subsequently, this method was improved by adding
object identification and location as a preliminary stage [42, 41]. Physical mapping is
one of the more complex tasks in FPV, particularly when 3D maps are required due to
the calibration restrictions. This problem can be partially alleviated by using a multi-
camera approach to infer the depth [43, 110]. Research on intangible variables, can be
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considered an emerging field in FPV. Existent approaches define attention points and
attraction fields, mapping them in rooms with multiple people interacting [11].

Interaction detection

The objectives described above are mainly focused on the user of the device as the only
person that matters in the scene. However, they hardly take into account the general
situation in which the user is involved. We label the group of methods aiming to rec-
ognize the types of interaction that the user is having with other people as Interaction
Detection. One of the main purposes in this objective is social interaction detection, as
proposed by [71]. In their paper, the authors inferred the gaze of the other people and
used it to recognize human interactions as monologues, discussions or dialogues. An-
other approach in this field was proposed by [193], which detected different behaviors
of the people surrounding the user (e.g. hugging, punching, throwing objects, among
others). Despite not being widely explored yet, this objective can be considered one of
the most promising and innovative ones a in FPV due to the mobility and personalization
capabilities of the coming devices.

2.1.2 Subtasks

As explained before, the proposed structure is based on objectives which are highly
co-dependent. Moreover, it is common to find that the output of one objective is sub-
sequently used as the input for the other (e.g. activity recognition usually depends on
object recognition). For this reason, a common practice is to first address small subtasks,
and later merge them to accomplish main objectives. Based on the literature review, a
total of 15 subtasks are proposed. Table 2.3 shows the number of articles analyzed in
this survey that use a subtask (columns) in order to address a particular objective (rows).
It is important to highlight the many-to-many relationship among objectives and sub-
tasks, which means that a subtask could be used to address different objectives, and one
objective could require multiple subtasks. To mention some: i) hand detection, as a
subtask, could be the objective itself in object recognition, [160], but could also give
important cues in activity recognition [72]; moreover, it could be the main input in the
user-machine interaction [200]. ii) The authors in [182] performed object recognition
to subsequently infer the performed activity. As their names are self-explanatory, sepa-
rate explanation of each of the subtasks is omitted, with the possible exceptions of the
following: i) Activity as a Sequence analyzes an activity as a set of ordered steps; ii) 2D-
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3D Scene Mapping builds a 2D or 3D virtual representation of the scene recorded; iii)
User Personal Interests identifies the parts in the video sequence potentially interesting
for the user using physiological signals such as brainwaves[169]; iv) Feedback location
identifies the optimal place in the head-up display to locate the virtual feedback without
interfering with the user’s visual field.

Table 2.3: Number of times that a subtask is performed to accomplish a specific objective
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Object Recognition and Tracking 4 15 13 3 10 2 1 1
Activity Recognition 3 8 3 1 13 2 1 8 1 6 6

User-Machine Interaction 6 3 2 1 3
Video Summarization 1 4 1 4 5 1 4 1 2 1

Environment Mapping 3 4 5 1
Interaction Detection 2 1 2 1 2 2

As can be deduced from table 2.3, Hand detection plays an important role as the base for
advanced objectives such as Object Recognition and User-Machine interaction. Global
scene identification, as well as Object Identification, stand out as two important subtasks
for activity recognition. More in detail, the tight bound between the Activity Recognition
and the Object Recognition supports the idea of [182], which states that Activity Recog-
nition is “all about objects”. Moreover, the use of gaze estimation in multiple objectives
confirms the advantages of the recent trend of using eye-trackers in conjunction with
FPV videos. Finally, it can be noted that Background Subtraction has lost some of its
reputation if compared with fixed camera scenarios, due to the highly unstable nature of
the backgrounds when observed from the First-person perspective.
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2.1.3 Video and image features

As mentioned before, FPV implies highly dynamic changes in the attributes and char-
acteristics of the scene. Due to these changes, an appropriate selection of the features
becomes critical in order to alleviate the challenges and exploit the advantages presented
in section 2.1. As is well known, feature selection is not a trivial task, and usually im-
plies an exhaustive search in the literature and extensive testing to identify which method
leads to optimal results.

The process of feature extraction is carried out at different levels, starting from the pixel
level, with color channels of the image, and subsequently extracting more elaborated
indicators at the frame level, such as saliency, texture, superpixels, gradients, etc. As
expected, these features can be used to address some of the subtasks, such as object
recognition or scene identification. However, they do not include any kind of dynamic
information. To add dynamic information in the analysis, different approaches can be
followed, for example analyzing the geometrical transformation between two frames to
obtain image Motion features such as optical flow, or aggregating frame level features
in temporal windows. Usually, dynamic features tend to be computationally expensive,
and are therefore usually applied to objectives in which the video is processed once
the activities have finished. Particularly interesting is the method presented in [161],
which uses the information of the superpixels of the previous frame to initialize and
compute the current frame superpixels, thus reducing the computational complexity of
the algorithm by 60%.

Table 2.4 shows the most commonly used features in FPV to address a particular subtask.
The features are listed in the rows and the subtasks in the columns. Note that color
histograms are by far the most commonly used feature for almost all the subtasks, despite
being highly criticized due to their dependence on illumination changes. Another group
of features frequently used for several subtasks is Image Motion. Some of its most
remarkable results are for Activity Recognition in [115, 184], for Video Summarization
in [172], and recently as the input of a Convolutional Neural Network (CNN) to create
a biometric sensor that is able to identify the user recording the video in [99]. The use
of Feature Point Descriptors (FPD) is also worth noting. As expected, they are popular
for object identification, but it is also remarkable their application to identify relevant
places such as touristic hotspots [3, 111, 66]. Note from the table that the “dynamic
objectives” like Activity Recognition and Video Summarization are the ones which take
the most advantage of the Motion features, while Object Recognition is mainly based on
frame features such as FPD and Color histograms.
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Table 2.4: Number of times that each feature is used in to solve an objective or subtask
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FPD

SIFT 9 5 1 4 3 2 14 1 1 2

GFTT 1 1 1

BRIEF 2 1 1

FAST 1 1

SURF 2 6 1 2 1 1 2 2

Diff. of Gaussians 1 1

ORB 1 1

STIP 2 1 1

Texture

Wiccest 1 1

Laplacian Transform 1 1

Edge Histogram 1 1 1 1 1 1

Wavlets 1 1

Other 1 1 1

Saliency
GBVS 1 1 4

Other 1 1 1

MSSS 1 1

Motion
Optical Flow 5 14 2 5 1 5 1 2 2 6 1 4 5

Motion Vectors 1 1 3 1 1 1 3 1

Temporal Templates 1 1

Glob. Scene CRFH 1 1

GIST 1 2 1 2 1

Img. Segment. Superpixels 2 2 1 2 3

Blobs 2 1 1

Contour OWT-UCM 1 3 2 2

Color Histograms 21 20 11 10 3 8 20 4 4 1 5 7 1 2

Shapes HOG 6 4 3 1 2 5 1 1 3 1 1

Orientation Gabor 1 1

From personal previous studies in Hand-detection and Hand-segmentation using multi-
ple features and superpixels, Color features are a good approach, particularly if a suit-
able color space is exploited [160]. We found that low level features such as Color
Histograms could help to reduce the computational complexity of the methods and get
close to real time applications. On the other side, under large illumination changes, in
[19] we highlight how Color-based hand-segmentators could introduce and disseminate
in the system noise created by hands missdetections. To alleviate this problem, we used
shape features, such as HOG, in order to pre-filter wrong measurements and improve the
classification rate of the overall system.
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The two empty columns in table 2.4 can be explained as follows: Activity as a sequence
is usually chained with the output of a short activity identification [9, 244, 3], whereas
identification of the User Posture is accomplished in [29] without employing visual fea-
tures, but using GPS and accelerometers.

2.1.4 Methods and algorithms

Once that features are selected and estimated, the next step is to use them as inputs
to reach the objective (outputs). At this point, quantitative methods start playing the
main role, and as expected, an appropriate selection directly influences the quality of the
results, ultimately showing whether the advantages of the FPV perspective are being ex-
ploited, or whether the FPV-related challenges are impacting the objectives negatively.
Table 2.5 shows the number of occurrences of each method (rows) being used to accom-
plish a particular objective or a subtask (columns).

Table 2.5: Mathematical and computational methods used in objective or each subtask

Objective Subtasks
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3D Mapping 3 1 4 5
Classifiers 21 29 3 9 1 2 3 17 15 2 2 15 4 1 2 1
Clustering 4 8 3 5 2 3 6 3 8 1

Comon sense 3 8 1 3 3 2 1 3
DPMM 1 2 3

Feature Encoding 4 6 3 6 3 3
Optimization 1 1 1 1 1

PGM 6 17 3 3 2 1 1 11 1 6 1 7
Pyramid Search 4 4 1 3 2 2 2

Regresions 1 1 1 1 1 1 1 1
Temporal Alignament 1 1

Tracking 4 3 5 7 1 2
PGM Probabilistic Graphical Models.
DPMM Dirichlet Process Mixture Models.
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The table highlights classifiers as the most popular tool in FPV, which is commonly used
to assign a category to an array of characteristics (see [138] for a more detailed survey
on classifiers). The use of classifiers is wide and varies from general applications, such
as scene recognition [74], to more specific, such as activity recognition given a set of
objects [72]. Particularly, we found that the most used are the Support Vector Machines
(SVM) due to their capability to deal with non-separable non-linear multi-label problems
using low computational resources. On the other hand, SVMs require large labeled
training sets which restricts the range of potential applications.

In our previous works we performed a comparison of the performance of multiple fea-
tures (HOG, GIST, Color) and classifiers (SVM, Random Forest, Random Threes) to
solve the hand-detection problem [19]. Our conclusion was that HOG-SVM was the
best performing combination, achieving a classification rate of 90% and 93% of true
positives and true negatives respectively. Another group of methods commonly used are
clustering algorithms due to its simplicity, computational cost, and small requirements
in the training datasets. Despite their advantages, clustering algorithms could require
post-processing analysis of the results in order to endow them with human interpreta-
tion.

Another promising group of tools are the Probabilistic Graphical Models (PGMs), which
can be interpreted as a framework to combine multiple sensors and chain results from
different methods in a unique probabilistic hierarchical structure (e.g. to recognize the
object and subsequently use it to infer the activity). Dynamic Bayesian Networks (DBNs)
are a particular type of PGMs which include time in their structure, in turn making them
suitable for application in video analysis [47]. As an example, DBNs are frequently
used to represent activities as sequences of events [214, 196, 50, 29, 218]. It is common
to find that particular methods, such as Dirichlet Process Mixture Models (DPMM), are
presented in their PGM notation, however given the promising recent results achieved in
Activity Recognition and Video Segmentation, they were grouped separately.

As stated in section 2.1.3, there is a large number of features that can be extracted for
FPV applications. A common practice is to mix or chain multiple features before using
them as input of a particular algorithm (table 2.5). This practice usually results in ex-
tremely large vectors of features that can lead to computationally expensive algorithms.
In this context, the role of Feature Encoding methods, such as Bag-of-Words, is crucial
to control the size of the inputs. We highlight the importance that some authors are giv-
ing to this tool, which, despite not being an automatic strategy like Linear Discriminant
Analysis (LDA) and Principal Components Analysis (PCA), can nevertheless help to
include human intuition in the analysis. As an example, the authors in [153] use BoW
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in Activity Recognition taking into account the presence, level of attention, and the role
of the objects in the video.

The use of machine learning methods (e.g. classifiers, clustering, regressors) intro-
duces an important question to the analysis: how to train the algorithms on realistic
data without restricting their applicability? This question is widely studied in the field
of Artificial Intelligence, and two different approaches are commonly followed, namely
unsupervised and supervised learning [40]. Unsupervised learning requires less human
interaction in training steps, but requires human interpretation of the results. Addition-
ally, unsupervised methods have the advantage of being easily adaptable to changes
in the video (e.g. new objects in the scene or uncontrolled environments [210]). The
most commonly used unsupervised method in FPV are the clustering algorithms, such
as k-means. In fact, the best performing superpixels are the result of an unsupervised
clustering procedure applied over a raw image[2]. In [161] we proposed an optimiza-
tion of the SLIC superpixels, and latter in [162] we introduced a new superpixel method
based on Neural Networks. The proposed algorithm is a self-growing map that adapts its
topology to the frame structure taking advantage of the dynamic information available
in the previous frames.

Regarding the supervised methods, their results are easily interpretable but commonly
imply higher requirements in the training stage. As an example, at the beginning of
this section some of the applications of SVMs were highlighted. Supervised methods
use a set of inputs, previously labeled, to parametrize the models. Once the method is
trained, it can be used on new instances without any additional human supervision. In
general, supervised methods are more dependent on the training data, fact which could
work against their performance when used on newly-introduced cases [182, 139, 210,
71, 235, 87, 129]. In order to reduce the training requirements, and take advantage of
the useful information available on Internet, some authors create their datasets using
services like Amazon Mechanical Turk [208, 87], automatic web mining [18, 235], or
image repositories [238]. We named this practice in table 2.5 as Common Sense.

Weakly supervised learning is another commonly used strategy, considered as a middle
point between supervised and unsupervised learning. This strategy is used to improve
the supervised methods in two aspects: i) extending the capability of the method to
deal with unexpected data; and ii) reducing the necessity for large training datasets.
Following this trend, the authors of [66, 111] used Bag of Features (BoF) to monitor the
activity of people with dementia. Later, [74, 70] used Multiple Instance Learning (MIL)
to recognize objects using general categories. Afterwards, [3] used BoF and Vector
of Locally Aggregated Descriptors (VLAD) to temporally align a sequence of videos.
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Eventually, let us mention Deep learning, a relatively recent approach which combines
supervised and unsupervised learning techniques in a unified framework, where low
level significant features are learned in an unsupervised fashion [116].

2.2 Public datasets

In order to support their results and create benchmarks in FPV video analysis, some au-
thors have provided their datasets for public use to the academic community. The first
publicly available FPV dataset is released by [155]. It consists of a video containing
600 frames recorded in a controlled office environment using a camera on the left shoul-
der, while the user interacts with five different objects. Later, [180] proposed a larger
dataset with two people interacting with 42 object instances. The latter one is commonly
considered as the first challenging FPV dataset because it guaranteed the requirements
identified by [197]: i) Scale and texture variations, ii) Frame resolution, iii) Motion blur,
and iv) Occlusion by hand.

Implicitly, previous sections explain some of the main characteristics of FPV videos.
In [220], these characteristics are compared for several FPV and Third Person Vision
(TPV) datasets and their classification capabilities are evaluated. The authors reach a
classification accuracy of 80.9% using blur, illumination changes, and optical flow as
input features. In their study they also found a considerable difference in the classi-
fication rate explained by the camera position. The authors concluded that the more
stable the camera, the less blur and motion and then the less discriminative power of
these features. We highlight this difference as an important finding because it opens the
door to an interesting discussion concerning which kind of videos, based on quantitative
measurements, should be considered as FPV. Extra evidence about the role of the non-
wearable cameras, such as hand-held devices when they are used to record from a first
person perspective, is still pending. Our intuition points that, despite having some of the
challenging characteristics of wearable cameras like mobile backgrounds and unstable
motion patterns, hand-held videos would drastically differ in terms of features compared
in [220].

Table 2.6 presents a list of the publicly-available datasets, along with their characteris-
tics. Of particular interest are the changes in the camera location, which have evolved
from shoulder-based to the head-based. These changes are clearly explained by the trend
of the smart-glasses and action cameras (see Table 2.1). Also noticeable are the changes
in the objectives of the datasets, moving from low level, such as object recognition,
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Table 2.6: Current datasets and sensors data availability

Sensors # Objects Cam. Location
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Mayol05 [155] 2005 Desktop 3 O1 3 5 1 3

Intel [180] 2009 Multiple locations O1 3 42 2 3

Kitchen. [210] 2009 Kitchen Recipes 3 O2 3 3 3 3 3 18 3

GTEA11 [70] 2011 Kitchen Recipes 3 O2 3 7 4 3

VINST [3] 2011 Going to the work O2 3 1 3

UEC Dataset [115] 2011 Park O2 3 29 1 3

ADL [182] 2012 Daily activities O2 3 18 20 3

UTE [87] 2012 Daily activities O4 3 4 3

Disney [71] 2012 Thematic Park O6 3 8 3

GTEA gaze [72] 2012 Kitchen Recipes 3 O2 3 3 7 10 3

EDSH [132] 2013 Multiple locations O1 3 - - - 3

JPL [193] 2013 Office Building O6 3 7 1 3

EGO-HSGR [200] 2013 Library Exhibition O3 3 5 1 3

BEOID [54] 2014 Multiple locations O2 3 3 6 5 3

EGO-GROUP [7] 2014 Multiple locations O6 3 19 3

EGO-HPE [6] 2014 Multiple locations O1 3 4 3

EgoSeg [184] 2014 Multiple locations O2 3 7 2 3

Egocentric Intel/Creative [191] 2014 Multiple locations O1 3 3 2 3

* Objectives: [O1] Object Recognition and Tracking. [O2] Activity Recognition. [O3] User-Machine Interaction. [O4] Video Summariza-
tion. [O5] Phisical Scene Reconstruction. [O6] Interaction Detection.

** The table summarizes the characteristic described in the technical reports or the papers proposing the datasets.

to more complex objectives, such as social interaction and user-machine interaction.
It should also be noted that less controlled environments have recently been proposed
to improve the robustness of the methods in realistic situations. In order to highlight
the robustness of their methods, several authors evaluated them on Youtube sequences
recorded using goPro cameras [115].

Another aspect to highlight from the table is the availability of multiple sensors in some
of the datasets. For instance, the Kitchen dataset [210] includes four sensors, the GTEA
approach [72] includes eye tracking measurements, and the Egocentric Intel/Creative
[191] was recorded with a RGBD camera.
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2.3 Conclusion and future research

Wearable devices such as smart-glasses will presumably constitute a significant share of
the technology market during the coming years, bringing new challenges and opportuni-
ties in video analytics. The interest in the academic world has been growing in order to
satisfy the methodological requirements of this emerging technology. This survey pro-
vides a summary of the state of the art from the academic and commercial point of view,
and summarizes the hierarchical structure of the existent methods. This paper shows the
large number of developments in the field during the last 20 years, highlighting main
achievements and some of the up-coming lines of study.

From the commercial and regulatory point of view, important issues must be faced before
the proper commercialization of this new technology can take place. Nowadays, the
privacy of the recorded people is one of the most discussed ones, as these kinds of
devices are commonly perceived as intruders [170]. Other important aspects are the legal
regulations depending on the country, , and the intention of the user to avoid recording
private places or activities[222]. Another hot topic is the real applicability of smart-
glasses as a massive consumption device or as a task-oriented tool to be worn only
in particular scenarios. In this field, the technological companies are designing their
strategies in order to reach out to specific markets. As an illustration, recent turn of
events has seen Google move out of the glass project (originally intended to end with a
massively commercialized product), in order to target the enterprise market. Microsoft,
on the other hand, recently announced its task-oriented holographic device “HoloLens”
embodied with a larger array of sensors.

From the academic point of view, the research opportunities in FPV are still wide. Under
the light of this bibliographic review and our personal experience, we identify 4 main
hot topics:

∙ Existing methods are proposed and executed in previously recorded videos. How-
ever, none of them seems to be able to work in a closed-loop fashion, by con-
tinuously learning from users’ experiences and adapt to the highly variable and
uncontrollable surrounding environment. From our previous studies [48, 49], we
believe that a cognitive perspective could give important cues to this aspect and
could aid the development of the self-adaptive devices.

∙ The personalization capabilities of smart-glasses open the door to new learning
strategies. Incoming methods should be able to receive personalized training from
the owner of the device. We have found out, for instance, that this kind of ap-
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proach can help alleviate problems, such as changes in the color skin models from
different users [160] in a hand detection application. Indeed, color features, as
stressed in 2.4, has proven to be extremely suitable to be exploited in this field.

∙ This thesis focuses on methods for addressing tasks accomplished mainly by one
user coupled with a single wearable device. However, cooperative devices would
be useful to increase the number of applications in areas such as environment
mapping, military applications, cooperative games, sports, etc.

∙ Finally, regarding the real time requirements, important developments should be
made in order to optimally compute FPV methods without draining the battery.
This must be accomplished both from the hardware and the software side. On
the one hand, progress still needs to be made on the processing units of the de-
vices. On the other, lighter, faster and better optimized methods are yet to be
designed and tested. Our personal experience lead us to explore fast machine
learning methods [19] for hand detection, in the trend highlighted by table 2.5,
and to discard standard features such as optic flow [160] because of computational
restrictions. Promising methods in standard computer vision research, such as su-
perpixel methods, were built from scratch in [162] in order to make them faster
and better suited for video analysis [161]. Eventually, important cues to the prob-
lem of computational power optimization may also be found in cloud computing
and high performance computing.
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Chapter 3

Global Framework

This chapter justifies the interest in hand-related methods in First Person Vision (sec-
tion 3.1) and fit them in a global structure. Starting from a hierarchical taxonomy of
algorithms (section 3.2), the framework is extended to include cognitive features in the
design (section 3.3)1.

3.1 Context and motivation

Based on the considerations done in the previous chapters, we see the emergence of a
new field of research in computer vision, focused on the users’ point of view. Such a
First Person Computer Vision (FPCV) is de facto solicited, and at the same time made
possible, by the above mentioned brand-new available technology, namely a wearable
computer equipped with a first-person camera framing everyday life. Noticeably, FPV is
somehow more specific than simple vision from moving cameras, due to the constraints
the device has with the subject and his sub-parts. This specificity might represent an
exploitable added value in processing the information gathered, especially for what con-
cerns interactions between the user and the outside world.

1This chapter is mainly based on two peer reviewed publications: the overview presented in section 3.1 can
be found in [160], while the analysis provided in section 3.2 has been published in [20]
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As already mentioned, FPV from wearable devices involves information fusion at vari-
ous complexity and abstraction levels ranging from pure image processing to inference
over patterns. We stress here three points:

∙ At a low level, image processing must be exploited for object detection, local-
ization, tracking and recognition. Here the problem of information fusion [28]
appears in a manifold of aspects [58] [209] [64].

∙ Wearable devices such as the above described glasses are going to be equipped
with other sensors than a camera. These may include an accelerometer, a gy-
roscope, a magnetometer, wifi, bluetooth, gps barometer, microphone and many
others. Fusing data from this variety of sensor will become an issue in designing
applications as for smartphones. Multisensor data fusion is a well known issue
and has always drawn the attention of researchers in many fields [79] [78].

∙ At a higher level of abstraction, scene and behaviour understanding is required
for cognitive applications. Here context-based information fusion plays a central
role. More in detail, the modelling of the interaction between a the user and the
outside world often relies on the fusion of "external" and "internal" information
(e.g. [150] and [46]).

We present here a global framework, focusing on inference over hands. The reason
we focus on hands is exceptionally simple: hands are almost always in our field of
view, and are involved in the majority of everyday task (just think about writing, lacing
shoes, driving, eating ...). Hands are maybe the principal means we employ to actively
interact with the surrounding world, things and persons. So we claim that hands are the
best starting point for implementing context-aware functionalities on wearable devices.
In addition, new technologies as for instance the Microsoft Kinect and the ever-new
Leap Motion controllers [207], seem to be pushing towards hands-free and even device-
free interfaces for an enhanced human/computer interaction. In this context, gesture
recognition will play a central role.

Hand detection, segmentation, tracking and extended tracking (i.e. tracking of hand sub-
parts) are problems which have been widely addressed in computer vision. At present,
a perfect hand segmentation or accurate hand localization are hardly reached especially
under complex conditions. Past approaches are mainly focused on detecting hands from
a fixed camera framing a whole person and thus relied on prior knowledge of human
silhouettes [122]. The credit for the best degree of accuracy surely goes to depth sensors,
which allow for a 3D reconstruction of the scene and a more accurate segmentation of
hand shapes [133], thanks to the additional information carried by the depth channel.
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Yet, we focus on old fashioned digital cameras, as for the moment no such depth sensor
is expected to be wearable, although there exist prototypes implementing stereoscopic
vision.

Figure 3-1: Hand detection in a human silhouette [133]

Most 2D approaches for hand tracking rely on skin colour features, which looks natural.
However, colour features are sensitive to variations in illumination and shadows. A
colour correction method is proposed in [236] to overcome this difficulty. It is here
claimed that a Gaussian Mixture Model (GMM) can well capture complex variations
caused by the difference of human races, gender, age etc. In [157] a Skin HOG model
(SHOG) is proposed to construct a robust and efficient hand detector. However, a hybrid
approach seems preferable, as also claimed in [26], where the Viola-Jones-like object
detection scheme (originally applied to face detection [227]) is combined with a colour
based detector, giving satisfactory results for the set of postures considered.

As already pointed out, in the near future more and more videos will be shot by wearable
devices, from a first-person point of view. FPV video processing will be more and more
requested (raising, among other things, considerable privacy issues). We address here
some points of this problems and make some considerations.

Good news is that first person perspective can be somehow exploited. Besides, hand
tracking is a very peculiar problem. It is common understanding that the more specific a
problem is, the more the constraints from the problem itself can be taken advantage of.
General issues are often more difficult to be addressed.

∙ Number of targets. Although FPV hand tracking is not a problem with a fixed
number of targets, priors on it can be guessed. No more than two targets are
allowed, and an equal probability of having zero, one or two targets in the scene
can be conjectured.

∙ Shape. Hands from a first person point of view are often framed together with the
naked arm. A typical oblong silhouette is shown in Figure 7-3.
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∙ Occlusions. Hands from a first person point of view are hardly occluded. Hand-
to-hand or hand-to-object occlusions may of course occur, however hand-to-body
occlusions hardly happen.

∙ Interactions. Hands often interact one with the other while performing basic tasks.
It has been showed [150] that target interactions can be exploited for improving
object tracking.

∙ Geometrical constraints. Hands are linked through arms to the trunk, on which
our head is mounted. Degrees of freedom in moving them are then limited by
geometrical constraints, which can be then exploited in hand tracking.

∙ Personalization Skin colour features vary a lot from person to person and it is
difficult to capture such complex variations, caused by the difference of human
races, gender, etc. However, wearable devices are personal (as mobile phones
and smartphones), and customized colour models learned from a single user are
simpler and more reliable.

On the other hand, some bad news comes out in considering first person perspective
from a wearable device.

∙ Moving camera. The problem is a typical moving camera issue, which has been
widely addressed in literature especially for what concerns moving vehicles. How-
ever constant speed or at least certain amount of regularity in the motion must
often be hypothesised ( see e.g. [55]). Anyway many standard methods such as
old fashioned background subtraction for change detection cannot be employed in
these circumstances, unless an accurate off-line training phase is performed [151].

∙ Framing. As depicted in Figure 3-1, hand detection is often performed on well
framed ad hoc images. This hardly happens in shooting first person videos, but
for specific gestures that could be required for a hypothetical device-free interface.

∙ Camera motion estimation is complicated by the fact that complex roto-translation
matrices are involved, as a head often moves sharply and brusquely, yielding high
frequencies in the signals. Even integrating data with other sensors such as an
accelerometer could be not so easy. The most natural local frame of reference
would be the one integral with the device (and thus with the user).

∙ Perspective. The majority of hand detection and gesture recognition methods in
literature address the problem from the perspective shown in Figure 3-1, i.e fram-
ing the hands’ palm, from the front. From a first person perspective, the back
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(or, even worse, the side) of the hand is much more often seen, making gesture
recognition harder.

∙ Real time requirements. The video processing algorithm must meet real time re-
quirement, while dealing with the limited computational resources and power sup-
ply carried by a wearable device.

3.2 A unified hierarchical framework for hand-related
methods

As highlighted above, FPV videos offer important benefits and challenges to computer
vision . As the main benefit, it is the first time that a wearable device is recording ex-
actly what the user have in front of him. However, being it mobile and wearable, implies
highly variable environments with different illumination [139] and without any kind of
static reference system [87]. In FPV, unlike in static cameras video processing, both
the background and the foreground are in constant motion. An intuitive implication of
the FPV camera location is the general belief that the user hands are being constantly
recorded and thus the large number of studies based on their gestures and trajectories.
The hand presence is particularly important in the field, because, for first time, hand ges-
tures (conscious or unconscious) can be considered the more intuitive way of interaction
with the device.

Indeed, hands have played an important role in a large group of methods, for example in
activity recognition [70], user-machine interaction [200], or even to infer the gaze of the
user [134]. In a recent work, the authors in [19] point out the effects of wrongly assume
full time presence of the hands in front of the user. Hand-based methods are traditionally
divided in two large groups, namely model-based and data-based methods [155]. The
former aims to find the best configuration of a computational hand model to match the
image in the video, while the latter are lead by video features such as color histograms,
shape, texture, orientation, among others. Figure 3-2 reviews some of the most relevant
hand-based papers in FPV.

The classic taxonomy of hand-based methods is too broad and several authors have
suggest further extensions according to the features used, the task addressed, and the
required sensors. In [22, 19] the authors propose a hierarchical division of the processing
steps that can be independently solved e.g. hand-detection, hand-segmentation, hand-
tracking, etc. In practice, nowadays, it is common to find a well trained pixel-by-pixel
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hand-segmenter taking control of the whole system. The segmenter is thus responsible
for understanding whether hands are present (after exhaustive negative classification of
every pixel), define the shape of the hands (task for which it is trained), and suggest
the areas to be tracked keeping record across the frames of the segmented shapes. This
approach achieves good results, particularly in finding hand-like pixels; however it rises
several issues: i) it exhaustively uses computational resources even when the hands are
not present, which is the common case in daily real videos; ii) it could disseminate
noise in the system, produced by false-positives; iii) it usually does not exploit temporal
correlation between frames. Figure 3-3 shows the possible results obtained by a pixel-
by-pixel hand-segmenter. Assuming full time presence of hands may lead to important
issues: i) possible wrong hand measurements, particularly in no-hand frames, would
be propagated to other levels of the system and create wrong conclusions or unwanted
feedback from the device and ii) unnecessary searching for local features in the image,
meaning an inefficient use of computational resources and reduction of the battery life.
Note that a pixel-by-pixel hand segmentation of a frame with a resolution of 1280× 720

pixels involves 921.600 classification tasks. For practical purposes, some authors reduce
the resolution of the images without compromising the quality of the results, however
the calculation is still (𝑂2).

At this point, an intuitive question arises: why to go into detailed pixel-by-pixel clas-
sification without knowing first if it is worth it? In order to answer this question, and
following the same reasoning of [166] on video analysis, two different tasks should
be differentiated, namely hand-detection and hand-segmentation. The former term has
been extensively used (and possibly leading to a misunderstanding) for tasks in which
the localization of the hands in the scene was required. In this work, this term refers to a
step in which a global answer is given to whether hands are present in the scene or not.
The latter aims at delineating the hands in a frame at a pixel level. Both problems are
closely related, being possible to use hand-detection as a pre-filtering stage for hand-
segmentation under the framework of sequential classification, in which the output of
the first classifier is used to decide whether the second one will be used [252]. Further-
more, different features could be applied in each level, being preferable the use of global
features for hand-detection purposes [173].

Under this lines of thought, this chapter attempts to highlight the importance of a proper
fusion of the above-mentioned tasks in a unified hierarchical structure. In this structure,
each level is developed to perform a specific task and provide its results to the rest of the
levels. To optimize resources, the structure must switch between its components when it
is required e.g. the hand-detector must work only when the hands are not present, while
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(a) True positive (source: [132]) (b) False negative (source: [114])

(c) False positive (d) True negative

Figure 3-3: Examples of hand-segmentation.

the hand-segmenter (along with a dynamic tracker) is active in the opposite case, but
must give back the control of the system to the hand-detector when the hands leave the
scene. Finally, the system design must give priority to shared features to optimize extra
resources and make the real-time dream closer. The latter is not straightforward and
explains why the current methods are usually evaluated in a post-processing framework,
restricting the eventual applicability of the field.

The remaining of this section explores some of the ideas behind a unified framework for
hand-based methods in FPV, and highlights some of the current challenges of the field
for real-life applications.

3.2.1 Levels structure

As already mentioned, one of the main challenges in FPV video analysis is to under-
stand user’s hand movements in uncontrolled activities. A proper interpretation of hands
(e.g. trajectories, gestures, interactions) opens the door to advanced task such as activity
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recognition and user machine interaction, but more importantly it could be the corner-
stone to move the wearable devices from experimental state to useful technology. Given
the camera location and the user proximity, a system that is able to capture hand ges-
tures could allow smart glasses to do things that other devices like smart-phones cannot.
Incidentally, this technology could help to alleviate everyday difficulties of people with
visual [149], speaking [215], or motor issues [57]

Current methods have reported remarkable results for tasks like detecting hands presence
in front of the user [19], segmenting the silhouette [92, 131, 132, 160], recognizing
basic gestures [200, 232], inferring hand posture [191, 192], and identifying whether a
hand belongs to the user or to a third person [128]. In general, these subtasks could be
considered partially solved, but for an ideal smart wearable camera they are supplied as
independent pieces of software resting over different sets of assumptions. Two examples
of this are: i) the already mentioned case of the pixel-by-pixel classifier, which despite
of being developed to solve the hand-segmentation problem is used to detect, segment
and track the hands on its own, at a high computational cost, ii) the hand-detector that,
once it is sure about the hands presence, keeps working in parallel to detect if the hands
leave, instead of using the detailed results of the hand-segmenter.

To design a unifying system for hand-based methods in FPV it is important to identify
some of the more important components, standardize its inputs/outputs and define their
role in the overall system. Our approach stands over the task division proposed in [19,
22] and is summarized in the hierarchical structure proposed in Figure 3-4. The figure
shows the most important steps in hand-based methods. Some of them could be non
necessary for some applications (e.g. not every application needs to identify the left
and right hand) or extra levels could be included (e.g. pose recognition). In the bottom
part of the diagram are the raw frames, while in the upper part lie the higher inference
methods that search for patterns in the hand movements and trajectories. The diagram
shows a feature extractor that can be re-used by all the levels: a system that is able to
use the same features in multiple levels can save valuable computational resources and
processing time.

The diagram makes it evident the importance of a system that is able to optimally de-
cide which is the minimum number of methods running in parallel for each time in-
stance. This switching behaviour is crucial in the bottom levels (hand-detection and
hand-segmentation), as well as in the identification and tracking levels to model each
hand separately. In the first case, an optimized version of the sequential classifier pro-
posed in [19] is used. The optimized version of this method switches from the hand-
detection to the hand-segmentation level whenever the decision moves from “no hands”
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Figure 3-4: Hierarchical levels for hand-based FPV methods.

to “hands”; and from the hand-segmentation to the hand-detection level if there are no
more positive pixels in the frame. In the second case, the switching models literature
[49, 177] suggests useful strategies to decide which hand models need is to be used at
that time. The hand-id (left-right) of the segmented hands emerges as a good switch-
ing variable. The hand-id can be estimated using the angles and the positions of the
segmented shapes.

The diagram shows a bottom-up design starting from the features and arriving to simpli-
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fied trajectories to be used by different applications. However, it is worth to mention that
a top-down analysis focused on the application field can remove some of the assumptions
in different levels and lead to considerable improvements to the overall performance. As
example, the authors in [128] take advantage of psychological experiments among kids
and adults to relax the illumination assumption of their proposed method.

In the following, we briefly describe each hierarchical level and discuss some approaches
to face the problems that can be encountered. Some results presented in the following
chapters are also anticipated.

Hand-detection: This level answers the yes-or-no question of the hands’ presence in
the frame. The problem is addressed in [19] as a frame by frame classification problem.
In their experiments the authors report that the best result is achieved with the combina-
tion of Histogram of Oriented Gradients (HOG) features with a Support Vector Machine
(SVM). One of the main problems of this frame-by-frame approach is its sensibility to
small changes between frames, which makes unstable in time the decisions taken by
the classifier. In recent experiments this issue is alleviated using a Dynamic Bayesian
Network (DBN) that filters a real valued representation of the SVM classifier. Table 3.1
shows the performance of both approaches (HOG-SVM and the DBN) for each of the 5
testing uncontrolled locations of the UNIGE-egocentric dataset [23]. In the framework
of the unified system, the hand-detector must be optimized to detect as fast as possible
the frames on which the hands enter the scene. The problem will be addressed in details
in chapter 4.

Table 3.1: Comparsion of the performance of the HOG-SVM and the proposed DBN.

True positives True negatives

HOG-SVM DBN HOG-SVM DBN

Office 0.893 0.965 0.929 0.952
Street 0.756 0.834 0.867 0.898
Bench 0.765 0.882 0.965 0.979
Kitchen 0.627 0.606 0.777 0.848
Coffee bar 0.817 0.874 0.653 0.660

Total 0.764 0.820 0.837 0.864
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Hand-segmentation: It is probably the more explored problem in FPV. The main task
is to delineate the silhouette of the hands at a pixel level. The more promising results
are reported in [132, 131, 160] achieving F-scores around 83% under different illumi-
nation levels. The main challenge in the pixel-by-pixel approach is the computational
complexity of the task, involving the decision for each pixel in each frame. For instance,
the camera of the Google glasses has a resolution of 720p and records 30 frames per
second, implying 928.800 pixel classifications per frame and a total of 27′864.000 per
second of video. A promising strategy to reduce this number is to simplify the frames
as SLIC superpixels [2] and classify the simplified image as done in [200]. Within this
approach, in [161] an optimized initialization of the SLIC algorithm is proposed. It al-
lows to segment 13 frames per second, while the original SLIC is able to process only 1.
Figure 3-5 shows an example of the optimized SLIC algorithm. Chapter 5 is dedicated
to methods to be applied at segmentation level.

Figure 3-5: Optimized superpixels of a frame with hands [161]

Hand-identification: It is an intuitive but challenging task. The objective is to iden-
tify the left and the right hand. The hand-identification problem is extended in [128],
proposing a Bayesian method to identify, using the relative positions, the hands of the
user as well as the hands of a third person in the video. At this point it is worth to men-
tion the robustness of the proposed hand-detector to the presence of third person hands.
However, in the segmentation level, extra effort must be done to segment only the user
hands. Assuming a reliable hand-segmentation it is possible to build a simple identifica-
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tion system based on the angle and the side of the frame from which the hand appears,
as detailed in chapter 6. We found that in realistic scenarios this approach properly dif-
ferentiate the left and the right hand in almost all the frames at low computational cost.
Two difficult scenarios of this approach are: i) The hands are close enough to create a
single shape; ii) the appearance of hands is divided by an external object as a bracelet or
a watch, creating several hand-like shapes. Figure 3-6 shows a preliminary example of
our identification algorithm based on manually segmented shapes.

(a) Incomplete identification (b) Occlusion problem

(c) Right hand identification (d) Both hand identification

Figure 3-6: Hand-Identification.

Tracking and trajectories: For a wearable camera it is important to record, track and
denoise hands trajectories. An intuitive and straightforward approach is to keep history
of the hands centroid as done in [160]. However, the use of dynamic filters could help to
increase the accuracy of the trajectories, reduce the sampling rate (the lower the sampling
rate the closer to real time performance), and manage the switching process between the
hand-detection and the hand-segmentation level. Regarding the initial conditions (e.g.
initial coordinates of the tracked hand) the best choice is to use dynamic filters like the
h-filter, which only requires the empirical distribution of the initial coordinates [25]. The
initial distribution can be found using empirical data as shown in [180] (Figure 3-7(a)).
Regarding the dynamic model, our preliminary experiments suggest that a simple linear
model can achieve promising results for high frequency sampling. However additional
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tests are required before a conclusion can be made. Figure 3-7(b) shows frame by frame
tracking of a hand center.

(a) Empirical distribution of hand locations [180] (b) Tracking the hand using the centroid

Figure 3-7: Hand-Tracking.

Hands Interactions: Once hands are located and their trajectories are inferred, a pos-
sible next step is to understand the interactions between them. For instance, if each
hand is performing an independent task (e.g. moving an object, making a gesture) or if
both hands are cooperating to accomplish particular objective (e.g. making tea, spread-
ing butter, driving, etc.). At this level important features can be found in the center of
mass, the location of the handled objects, the distance between the hands and the rela-
tionship between the left and right trajectory. One of the most important works about
hand-interaction is [70], where the spatial relation of the hands as well as the handled
objects is used to infer some cooking task like (e.g. Pout, stir, spread, etc.).

Hand-based higher inference: in the upper level of the structure are the methods
on which the results are built using the information of the hands, some examples are
activity-recognition [70] and user-machine interaction [70]. At this point we highlight
the relevance of a deep discussion about the real applicability of hand-based methods
in FPV and which are the benefits of using single wearable RGB cameras over other
systems, like stereoscopic cameras, the Kinect or the Leap-Motion.

On the one side, the miniaturization of RGB cameras makes them the most promising
candidate to be worn. On the other side, in exchange of extra battery consumption and
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an increase in the size of the device, the use of other sensors can bring important im-
provements to hand-based methods. For example, the depth component can reduce the
complexity of the hand-segmentation level and extra information like the pose of the
hands can be straightforwardly inferred. Figure 3-8 shows an example of a RGB and a
stereoscopic wearable device. Regarding external devices, like the Kinect or the Leap-
Motion, they can, under certain conditions, acquire a wider perspective of the body and,
as a result, provide a better understanding of hand movements. As a counterpart, the
wearability of these external devices is highly restricted. In summary, external devices
can represent a default choice for applications based on static locations without battery
restrictions. However, if the application field includes a user moving around with re-
stricted battery availability then a wearable RGB cameras is the most promising option.

(a) Google glass device (RGB device) (b) Meta glass (Stereoscopic device)

Figure 3-8: RGB and RGB-D wearable devices.

Discussion We have justified the importance of a systemic hierarchical approach to
develop hand-related methods. The proposed hierarchical switching structure for hand-
related methods in FPV can reduce the computational requirements and under further
analysis of the sampling rates could help to reach real time performances. The lat-
ter would expand the application areas of FPV video analysis, which by now has been
mainly focused on offline processing applications. Each level of the proposed structure
addresses a well defined and scoped tasks, allowing us to strategically design each of our
methods for a unique purpose e.g. hand-detection, hand-segmentation, hand-tracking,
etc. This will be the scope of the remaining chapters of this thesis.

We also point out the convenience of an application-based analysis of the field in order
to better understand its real scope and the advantages of a particular sensor choice. We
highlight the mobility and the battery cost as the main advantage of RGB cameras. How-
ever, if battery restrictions are removed, stereoscopic cameras could lead to more reliable
results. From our point of view this discussion must lead the coming developments to
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be focused on tasks only achievable by wearable cameras and not by other devices like
smart-phones, smart watches or static systems (e.g. Kinect, Leap-Motion).

We consider this as a good moment to analyze the lessons learned by the Glass Project
and the current approaches of other companies like Microsoft with the Holo-Lens device.
A brief analysis of the media reports about the glass project ending reveals two valuable
lessons: i) People would be willing to use these device only if they are able to do things
that existing technologies cannot do ii) There are big opportunities for the task oriented
approaches, such as medical and industrial applications, on which privacy issues are
minimum and the scenarios faced by the user can be partially restricted. On the other
hand, the available information of the Holo-Lens project, sketches a device with an
exhaustive use of hand-gestures as way of interaction. From this perspective hand-based
methods would clearly play an important role in the future of these devices.

In the following section we propose a possible extension of the presented hierarchical
framework following the paradigms of Cognitive Dynamic Systems.

3.3 Cognitive framework

As mentioned above, diagram 3-4 makes it evident the importance of a system that is
able to optimally decide what methods to run in parallel for each time instance. This
switching behaviour is crucial and in fact also implies a feedback-feedforward mecha-
nism across the levels together with some degree of self-awareness for the whole system:
i.e. the global algorithm must be able to measure and monitor its performance at each
level, in order to devise an optimal behavior. The framework of Cognitive Dynamic Sys-
tems provide such functionalities, and will be presented in the following, as an extension
of the hierarchy proposed above.

Cognitive science and cognitive neuroscience aim at understanding and clarifying hu-
man cognition [141] and, in the last decades, the Signal Processing community has ex-
perienced fruitful fertilization from such disciplines, in order to replicate the human
characteristic of adaptation. In particular, of primary interest is the human capability
of dealing with new situations. This feature can be very valuable especially in non sta-
tionary stochastic environments [93] and can be seen as the result of the actuation of
the so called cognitive cycle (Figure 3-9). Every step (Sensing, Analysis, Decision and
Action) is linked to a learning phase [65]. These concepts have been lately applied to
the computer vision research field, aiming to design more robust, resilient and adaptable
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computer vision systems, by mimicking human capabilities [108] [225], suggesting also
how vision should be active [89].

Figure 3-9: Cognitive cycle of a human being.

To this end, Haykin et al. have recently proposed a functional decomposition frame-
work [94] to realize a bio-inspired artificial cognitive cycle-based system, based on three
main blocks: a Cognitive Perception unit, a Probabilistic Reasoning unit and a Cognitive
Control unit. The interactions among these three components and between system and
environment are suggested to allow an artificial system to mimic some brain (prefrontal
cortex) functions using a probabilistic approach. Abstractness of this architecture makes
it scalable to a wide range of applications, however efforts have to be done to translate
these general guidelines in working Cognitive Dynamic Systems (CDSs): in fact, the
main known attempt to implement a real application [69] still grounds on a computa-
tional experiment. We propose it here as a container

3.3.1 Functional model

The problem of understanding our hands from a first person perspective is here ap-
proached exploiting the framework of Cognitive Dynamic Systems developed in the last
few years by Haykin and colleagues [95]. In [94] they introduced a functional represen-
tation of a cognitive dynamic system by mimicking the brain functionalities within an
artificial information processing framework. This defines an architecture usually struc-
tured in two main parts: the perceptron with the purpose of perceiving the surrounding
environment and generating an internal representation of it, and the actuator, which
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transfers decision into an action to be performed on the environment from which obser-
vation was generated.

More in details, three are the main blocks proposed in [94]: the Cognitive Perceptor
(CP), the Cognitive Controller (CC) and the Probabilistic Reasoning Machine (PRM)
(Figure 3-10). These blocks form a hierarchical closed-loop feedback system (namely
perception-action cycle), where both an environmental and an internal reward plays a
critical role in how the world is internally represented by means of perception. Each
numbered layer in the figure represents a different level of inference that an entity can
realize.

Figure 3-10: Haykin’s hierarchy for Cognitive Dynamic Systems. Cognitive Perceptor
(CP) unit; Cognitive Controller (CC) unit; Probabilistic Reasoning Machine (PRM) [94].

At the beginning of a perception-action cycle, the Cognitive Perceptor unit processes
the measurements coming from the environment (frames from the wearable camera) to
generate a representation of the external world. A side computation of a Perceptor unit
at a given level, beyond making available to higher inference levels a more symbolic
environment description, is to compute a reward estimated by means of the local instan-
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taneous perception error. The information coming from the feedback is passed through
the system and in particular, reaches the Cognitive Control unit, which chooses the best
action in order to maximize the next reward.

The feedback provided to the Cognitive Control unit is compared with previous errors in
order to choose the best action to be performed. Such choice is driven by the expected
maximization of the next reward that will be observed. In Haykin’s model a third compo-
nent is represented by a feedback modulating unit, the so called Probabilistic Reasoning
Module (PRM), aiming at providing a dynamic statistical coupling between perception
and action. The PRM keeps track of Perceptor error as well as of other errors related
to possible uncertainties in control actions in order to be capable to perform changes of
strategies in order to stabilize the overall system.

Each level is structured according to the same architecture and the information passing
between layers influences local perception and action strategies and relates to its lower
level as at an environment that generates observations and whose parameters can be con-
trolled through appropriate learned action knowledge. This resembles the hierarchical
structure proposed in the previous section. The cycle continues indefinitely, in order to
maintain a dynamic stability. This homoeostatic behaviour is the key aspect that allows
a cognitive system to adaptively interact with dynamic environments.

In this work, the CDS architecture is applied, with some extensions, to hands-related
methods. In general, such methods are not able to directly modify the environment with
an action. However, they are given the possibility to modify their internal parameters.
This is why we extend the concept of Environment with the meaning of both internal and
external environment and refer to the system as to a Proactive Passive CDS (PPCDS)
architecture: strategies implemented by the control unit do not directly translate into
physical actions that can be perceived by hands. On the contrary, they do translate into
cognitive actions [69] which change the internal capability of the system to adaptively
modify its behaviour. In fact, the perceptor may also be viewed as the internal environ-
ment for the controller. Incidentally, this is a key property in the CDS paradigm and
the foundation of the so-called two-state model: one state vector pertaining to the state
of the actual environment, and one to the state of the perceptor (also referred to as the
entropic state). Indeed, there is no environmental reward involved in the controller, in
the sense of external environment, but only internal reward.

More in detail, the self-aware capability of the system itself to pro-actively change its
behaviour, as a consequence of freely-varying hands behaviors, can be represented and
characterized as separate objects inside the CDS: the perception modules can be asso-
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ciated to the representation of hands at different abstraction levels, while the control
modules can be associated with the self-aware representation of the system itself.

After a measure is gathered, a probabilistic representation of the external world in the
Cognitive Perceptor unit is updated. This representation (Figure 3-11) is afflicted by
an intrinsic error (i.e. perception error) due to the imperfect state information problem.
The indication provided by the perception error, called Perception Entropic State (PES)
and denoted with 𝐻𝑘

𝑝 , provides a performance measure of the CP.

Figure 3-11: Perception-action cycle: details.

By observing the current target state, the perception error and its incremental deviation
[69], the Cognitive Controller unit can identify decision regions in some action space.
Actions are associated to regions in a continuous learning process, with the objective
of maximizing a parametrized objective function defined over the actual system perfor-
mance. Parameters consist in different rewards related to the set of actions that CC can
take.

Since action selection is afflicted as well by a certain degree of uncertainty, the PRM
must receive also an evaluation of the control error state, that is represented by the Con-
trol Entropic State (CES) denoted with 𝐻𝑘

𝑐 . The PRM block is then delegated to main-
tain a coherent representation of the global uncertainty level of the CC and CP ensemble.
This block has to receive measures from the perception and the control part and glob-
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ally evaluate the current system performance. Therefore, the two Entropic Computer
blocks act as sensors observing CC and CP estimates as posterior density functions and
producing measurement regarding the two-unit dynamic uncertainty levels. As entropic
variations gets higher, the Probabilistic Reasoning unit has the role to bring back the
system in a homoeostatic stability regimen by using the so called Perceptual and Con-
trol Attention. It is worth noting that a step forward in the direction of a more symmetric
architecture of a CDS is here introduced respect the Haykin model.

The general architecture of a CDS outlined above is applied in this thesis to hand-related
methods in a First person Vision System as discussed in the following section.

3.3.2 Discussion

The hierarchical nature of Haykin’s perception-action cycle (Figure 3-10) is quite ev-
ident. As already mentioned, each level is structured according to the same architec-
ture and the information passing between layers influences local perception (and action)
strategies and relates to both its lower level (seen as an environment that generates ob-
servations) and upper level.

More in detail, the information processed at each Perception module can be associated
to a representation of hands at different abstraction levels, enriched with new semantics
as inference is refined. It is thus straightforward to associate each level of Figure 3-4 to a
Perception unit of Figure 3-10, where the output of a level is exploited at the one above.

However, while this correspondence is manifest for what concerns the Perception side
of the functional diagram, it is not as clear yet for what concerns the Control side. As
earlier discussed in this section, the key issue introduced by Cognitive Control is the
so called two-state model. While the Perceptrons take care of monitoring the state of
the external environment (hands), the Controllers examine the state of the Perceptrons
(also referred to as the entropic state). Variations of entropy of the CP units triggers an
internal reward mechanism which reflects into cognitive action, which are intended to
maintain stability of the algorithms in the sensing phase of the cycle. Roughly speaking
the system possesses a certain degree of self-awareness and is given the possibility to act,
modifying its internal parameters. Actions can be selected in a state-less reinforcement
learning fashion, as explained in [69] and are anyway dependent by the specific sensing
algorithm.

In this thesis the latter mechanism is not implemented, but only hinted while discussing
specific methods. For instance, the Dynamic Bayesian Network designed in chapter 4
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is in some sense self aware of how good classification of frames is evolving. However,
the Control mechanism is not implemented, and the parameters of the algorithm are
optimized offline. Another example is the optimization framework presented in section
5.2.2, where the residual error of the Superpixel algorithm is employed as a measure of
performance.
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Chapter 4

Hand Detection

Classifying frames, or parts of them, is a common way of carrying out detection tasks
in computer vision. However, frame by frame classification suffers from sudden signif-
icant variations in image texture, colour and luminosity, resulting in noise in the ex-
tracted features and consequently in the decisions taken. Support Vector Machines have
been widely validated as powerful tools for frame by frame detection of non-separable
datasets, but are extremely sensitive to these variations between adjacent frames, creat-
ing as consequence sudden flickering in the classification results. This chapter proposes
a Dynamic Bayesian Network to smooth the classification results of Support Vector Ma-
chines (SVM) in detection tasks1.

Classification-for-detection is a widely studied area in computer science. Its main objec-
tive is to decide whether a particular object 𝑂 is present in the environment. The variety
of objects to detect is broad and multiple applications were investigated, such as pedes-
trian detection [229, 52, 63, 230, 83], hand detection [19], face detection [113], intrusion
detection [165], among others. In computer vision, a common approach to detect 𝑂 in
an image (or in a video sequence) is to exploit a classifier under a supervised framework,
using a balanced training dataset with 𝑂 and non-𝑂 sample images. In particular, sam-
ples (especially non-𝑂) should be sufficiently heterogeneous in order to allow a good
discrimination of the two classes.

The problem of detection is often related to the localization of an object in a frame

1The results presented in this chapter, together with the dataset, have been published in [21] and [23]
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(equivalently, the problem can be formulated as the detection of an object in a localized
sub-part of the frame). This task is frequently faced in an iterative way, classifying
images framed by a sliding window of different sizes moving across the image. All
these approaches are derived from the seminal work by Viola and Jones [228], in turn
inspired by [80]. Despite being computationally expensive, these strategies are widely
accepted as a powerful strategy for object detection and localization.

Instead of classifying raw images directly, it is usually preferable to classify extracted
features. Multiple alternatives have been previously evaluated depending of the detection
goal. An extensive literature is available: some of the more popular image features
are color histograms [107, 106] to detect parts of the human body, global features as
GIST [166] to detect general properties of the scene, rotation and scale invariant features
as SIFT [137] to detect and identify multiple objects at different scales and positions,
and shape features as Histogram Oriented Gradients (HOG) [52] to exploit particular
characteristic in the shape of objects. Recent approaches use mixtures of features at
different levels under the deep learning framework [112]. Regarding the classifiers,
multiple alternatives are available. However, a general consensus has been achieved
about the powerful combination between HOG and Support Vector Machines (SVM),
particularly for non separable datasets [52, 19].

These approaches are developed and trained without using temporal information, there-
fore their application in video sequences is usually carried out as a naive frame by frame
classification [202], which is extremely sensitive to small frame-to-frame features’ vari-
ations. To alleviate this problem some researchers smooth the features to reduce their
spatial and temporal variations [102]. Temporal stability of the detections can be consid-
ered as a common goal for many video processing applications, thus a dynamic smooth-
ing is typically more important than the spatial approach. For instance, this is done for
depth videos [179] and for RGB first-person videos [14] at pixel level.

Existing literature points out several promising applications of this video perspective.
Among them, hand-based methods stand as the most explored ones, aiming to exploit
the conscious or unconscious hands movements for performing higher inference about
the user [20] as in activity recognition [72, 180] and user-machine interaction [200]. A
common practice in FPV is to assume that hands are always recorded by the camera and,
as a consequence, they can be located and tracked to infer more complex information.
As it can be concluded after a quick scan of uncontrolled datasets like Disney [71] or
UTE [87], this assumption is not entirely true. In fact, the predominance of one or the
other type of frames (with/without hands) in a video sequence is not a consequence of
the advantageous camera location but also of the activity performed e.g. hands are more
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frequent when the user is cooking than when he is walking in the street.

Despite the practical advantages of assuming full time hands presence, this fact intro-
duces important issues when the proposed methods are applied on uncontrolled videos,
for example wasted computational resources or noisy signals in the hand-segmentation
stage, that could be propagated to other levels of the system. The authors in [19] pro-
pose a characterization of the two distinct problems, namely hand-detection and hand-
segmentation, and combine them in a sequential structure to improve the overall system
performance. Following the definition of [19], the hand-detection level answers the yes-
or-no question of the hands’ presence in the frame using global features and classifiers,
while the hand-segmentation level locates and outlines the hands’ region in a positive
frame using low level features like color under an exhaustive pixel by pixel classifica-
tion framework [134, 200, 160].

Regarding data availability, there are several FPV datasets available for research pur-
poses. In general the technical characteristics of these datasets are similar and the videos
are carefully recorded to guarantee the basic requirements identified by Schiele in 1999
[197]: i) Scale and texture variations, ii) Frame resolution, iii) Motion blur and iv) Hand
occlusions. Undoubtedly, these requirements are important, but, under the light of the
recent technological trends, some extra characteristics must be taken into account. An
example is the necessity of balanced datasets in terms of hands presence as described by
[19] and [21], to face the hand-detection problem under a classification framework. A
balanced dataset is a realistic assumption for wearable devices and could lead to impor-
tant improvements in the battery life, as well to the performance of higher-level meth-
ods like hand-based activity-recognition[70] and user-machine interaction [200]. It is
worth to mentions that, as shown in section 4.1, existing datasets does not guarantee
this condition, which makes them inappropriate to face the classification problem of the
hand-detection level.

This chapter focuses indeed on hand-detection, and its contributions are three-folded: i)
It presents the UNIGE-HANDS dataset for hand-detection, which guarantees a balanced
number of frames with and without hands in 5 realistic locations, as well as changes
in illumination, camera motion and hands occlusions. 2 ii) Multiple hand-detectors
(feature-classifier) are evaluated over the dataset, following [19], without considering
the temporal dimension of the data. iii) The best hand-detector (HOG-SVM) is extended
using a Dynamic Bayesian Network (DBN), which is tuned to smooth the decision pro-
cess. The presented method improves the performance of [19], taking advantage of the
temporal dimension of the video, and of [21], tuning the parameters through an heuris-

2[Dataset:] http://www.isip40.it/resources/UNIGEhands

58

http://www.isip40.it/resources/UNIGEhands


tic optimization. The computational complexity of the proposed approach is taken into
account by filtering the classification certainty of the SVM directly, instead of a generic
multidimensional array of features. Namely, we perform the filtering step at a higher
hierarchical level in the estimation process as depicted in Figure 4-1.

The remainder of this chapter is organized as follows: Section 4.1 summarizes the evo-
lution of hand-detection and segmentation methods and shows why the existent datasets
are not suitable to solve the hand-detection problem. Section 4.2, presents the UNIGE-
HANDS dataset and evaluates multiple frame by frame hand-detectors (combinations
of image features and classifiers). Later, section 4.3 extends the state-of-the-art method
using a DBN and briefly describes each of its components. Section 4.4 tunes the DBN
using a classic Genetic Algorithm (GA) and the Nelder-Mead simplex (NM) algorithm
in a cooperative fashion. Subsequently, the performance of the DBN is evaluated, and
under the light of the results, the challenges offered by the UNIGE-HANDS dataset
are presented. Finally, in section 4.5 conclusions are drawn and some lines for future
research are proposed.

4.1 State of the art

In the recent years, thanks to the growing availability of FPV recording devices, the num-
ber of methods to process related videos, as well as datasets, has increased quickly. To
the best of our knowledge a total of 16 datasets have been published between 2005 and
2014, each of them especially designed to face a particular objective, i.e. Object recog-
nition and tracking, activity recognition, computer machine interaction, video summa-
rization, physical scene reconstruction, and interaction detection. Table 4.1 summarizes
the existent datasets and their basic characteristics. The table also highlights the evolu-
tion of the camera location, moving from shoulder, to head-mounted. This trend can be
explained by the interest of technology companies to develop smart glasses and action
cameras.

Existing datasets can be divided in two main groups: datasets where hands are almost al-
ways present, and datasets where hands barely appear. The first group has been used for
object recognition (Mayol05, Intel), activity recognition (Kitchen, GTEA11, GTEA12)
and user-machine interaction (Virtual-Museum). These datasets are usually recorded
in fixed locations, like a kitchen or the office, while the user performs different tasks.
Regarding the hand-detection problem, these datasets are not suitable because it is not
possible to extract a set of negative samples in the same location and light conditions as
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Table 4.1: Current datasets and sensors availability [22].

# Objects C. Location
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Mayol05 [155] 2005 O1 5 1 3

Intel [180] 2009 O1 42 2 3

Kitchen. [210] 2009 O2 3 18 3

GTEA11 [70] 2011 O2 7 4 3

VINST [3] 2011 O2 1 3

UEC Dataset [115] 2011 O2 29 1 3

ADL [182] 2012 O2 18 20 3

UTE [87] 2012 O4 4 3

Disney [71] 2012 O6 8 3

GTEA gaze [72] 2012 O2 7 10 3

EDSH [132] 2013 O1 - - - 3

JPL [193] 2013 O6 7 1 3

Virtual Museum [200] 2013 O3 5 1 3

BEOID [54] 2014 O2 6 5 3

EGO-GROUP [7] 2014 O6 19 3

EGO-HPE [6] 2014 O1 4 3

* Objectives: [O1] Object Recognition and Tracking. [O2] Activity
Recognition. [O3] User-Machine Interaction. [O4] Video Summariza-
tion. [O5] Phisical Scene Reconstruction. [O6] Interaction Detection.

the positive ones to train binary classifiers. The second group of datasets are frequently
used for activity recognition (VINST, UEC, ADL), video segmentation (UTE, BEOID),
Interaction Detection (Disney, JPL, Bristol, EGO-GROUP, EGO-HPE). In general these
datasets are large and contain sequences of the user moving through several realistic lo-
cations. The number of frames with hands is low compared with the length of the videos,
and the locations with frames with hands are sparse, making impossible to extract a large
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enough balanced training set with similar locations. It is worth to highlight the impor-
tance of having frames with and without hands in the same location. This would lead
the classifiers to learn patterns related with the hands presence and not from the changes
in the location.

In general, all of these datasets guarantee the basic requirements identified in [197]: i)
Scale and texture variations, ii) Frame resolution, iii) Motion blur and iv) Hand occlu-
sions. However, they are mainly formed by clips framing users’ hands, which is not
realistic and makes it infeasible to evaluate hand-detection methods. Recently, the au-
thors in [220] perform a comparative study about the characteristic of FVP and Third
Person Vision (TPV) datasets. The authors found that using blur, illumination changes
and optical flow as input features is possible to differentiate with 80.9% of accuracy
between FPV and TPV datasets.

According to [155], known for being the first public dataset in FPV for object recog-
nition, hand-detection/segmentation methods can be grouped in two: model-driven and
data-driven. The former uses a computerized model of the hands to recreate the image
of the videos [217], while the latter exploit image features to infer about hand location,
shape and position [134, 200, 160].

Regarding hand-detection, a data-driven sequential classifier is proposed in [19], which
in a first stage detects hands, and in a second stage finds the hands silhouette at a pixel
level only for positive frames. In their experiments, the authors report the performance of
multiple classifiers and image features, to finally conclude that the best-performing com-
bination is HOG plus SVM achieving 90% of true-positives and 93% of true-negatives.
The authors in [246] follow a color-based approach in the same line of [134] which, as
is shown in [19], could introduce noise in the results under large illumination changes.
To conclude the overview, [128] proposes a probabilistic approach to detect if the hands
in the video belongs to the user or to another person.

4.2 UNIGE-HANDS dataset

The UNIGE-HANDS dataset for hand detection is a set of FPV videos, carefully recorded
to guarantee a good balance between frames with hands and without hands, and offers
challenging characteristics such as changes in illumination, camera motion and hand
occlusions. The UNIGE-HANDS dataset, videos and ground truth, is distributed for
public use. The dataset contains videos recorded in 5 uncontrolled locations (1. Office,
2. Coffee Bar, 3. Kitchen, 4. Bench, 5. Street). Each location in the dataset is in turn
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Table 4.2: Examples of the dataset frames.

Office Street Bench Kitchen Coffe Bar

Training

Hands

No Hands

Testing

Hands

No Hands

divided in training and testing videos. Table 4.2 shows some examples of the frames in
each location.

To record the dataset we used a GoPro hero3+ head mounted camera with a resolution
of 1280×720 pixels and 50 fps. The whole dataset, including training and testing videos,
contains one-hour and thirty eight minutes of video. In total, the training videos have
37.21 and 37.63 minutes of positives and negative sequences, respectively. The training
videos for each location are formed by 2 positives and 2 negatives videos approximately
3.34 minute-long each (10020 frames). Regarding the testing videos, they comprise
12.6 minutes of positive and 12.7 minutes of negative segments. The testing video of
each location lasts approximately 4 minutes (12000 frames), changing from positive to
negative in intervals of about one minute.

Following the procedure described in [19], multiple combinations of classifiers and
video features are evaluated over the new dataset. The classifiers are: Support Vector
Machine (SVM), Decision Tree (DT), and Random Forest (RF). The video features are:
Histogram of Oriented Gradients (HOG), the global scene descriptor GIST, three color
spaces (RGB, HSV, LAB) and its concatenation (RHL). The SVM uses a linear kernel
with a regularization parameter 𝐶 = 1. To compute the features, each frame is com-
pressed to 200 × 112 𝑝𝑥. The HOG extractor uses a block size of 16𝑝𝑥, a cell size of
8𝑝𝑥, and 9 directional bins, while color features are estimated over a grid of 25 × 14

cells (which are indeed 8 × 8𝑝𝑥 cells).
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Table 4.3: Performance of the proposed hand-detectors.

True Positives True Negatives

SVM DT RF SVM DT RF
10

-f
ol

d

HOG 0.89 0.77 0.81 0.90 0.76 0.88
GIST 0.78 0.75 0.72 0.79 0.74 0.88
RGB 0.77 0.72 0.73 0.77 0.73 0.86
HSV 0.72 0.76 0.78 0.72 0.78 0.88
LAB 0.75 0.85 0.89 0.75 0.85 0.90
𝑅𝐻𝐿1 0.78 0.85 0.86 0.77 0.85 0.91

Tr
ai

ni
ng

HOG 0.93 0.80 0.83 0.91 0.80 0.91
GIST 0.83 0.81 0.80 0.82 0.80 0.91
RGB 0.82 0.76 0.78 0.82 0.78 0.90
HSV 0.77 0.80 0.83 0.78 0.82 0.92
LAB 0.80 0.88 0.92 0.79 0.88 0.93
𝑅𝐻𝐿1 0.81 0.87 0.88 0.81 0.87 0.93

Te
st

in
g

HOG 0.76 0.72 0.70 0.84 0.75 0.83
GIST 0.51 0.51 0.43 0.67 0.58 0.70
RGB 0.57 0.60 0.57 0.72 0.64 0.68
HSV 0.60 0.65 0.65 0.66 0.67 0.75
LAB 0.56 0.75 0.74 0.69 0.73 0.77
𝑅𝐻𝐿1 0.57 0.74 0.71 0.68 0.71 0.78

1 𝑅𝐻𝐿 is the concatenation of RGB, HSV and LAB.

Table 4.3 reports the performance of each feature-classifier combination under three
different evaluation strategies: i) Cross-validation: 10-fold validation performed using
the training frames as described in [19]. This procedure requires to train each classifier
10 times using 90% of the sampled frames for training and 10% for testing. The reported
performances are computed using as training data 2203 frames with hands and 2233

without hands. These frames are gathered by sampling the training videos once every
second. ii) Frame by frame in the training videos: The classifier is trained using the
sampled frames, and tested in the remaining frames of the training videos. This approach
only requires to train the classifiers once, which is particularly useful for the tuning
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procedure explained in section 4.3. iii) Frame by frame in the testing videos: The
classifier is trained in the sampled frames but tested in the testing videos. This approach
is the more realistic to test the classifier because, despite being recorded in the same
locations, the testing videos are completely independent of the training stage.

The first finding in the table is that the performance reported in the 10-fold is slightly
lower that the reported by the authors in the original paper. This reduction is explained by
the challenges intentionally introduced in the dataset, namely the illumination changes
and the number of locations. The 10-fold performance validates the conclusion of [19],
where HOG-SVM stands as the best performing combination, although here the LAB-
RF achieve a similar performance. In general the first (10-fold) and second group (Train-
ing) of performances are similar, which validates the use of the second strategy to tune
the DBN in a computationally efficient way. To evaluate the performances in a dynamic
perspective (video sequences), each frame of the testing videos is classified using the
already trained hand-detectors. In general, these performances are lower than the first
and second group, showing the importance of the testing videos. The optimistic perfor-
mance reported by the cross-validation method is extensively explained in the literature
and is known as the bias in the cross validation procedure [17].

It is worth to note that HOG-SVM is the best performing combination in all the eval-
uation strategies, particularly in the third one (testing videos), where it achieves 76%

of true-positives and 84% of true-negatives. Noteworthy is also the performance of
LAB-RF, which despite of being lower than HOG-SVM in the testing case, could offer
important cues for to improve computational efficiency of the hand-detector. In addition
to the outstanding classification rate, the HOG-SVM combination shows an extra advan-
tage, given by its theoretical formulation, which naturally provides could provide a real
valued confidence measurement of hands presence. The latter is particularly important
in the dynamic approach as explained in the next section. The remainder of this chapter
is focused on the HOG-SVM detector and the dynamic strategy to improve its results.

4.3 Hand-detection DBN

In this section, a SVM-based detector is extended with dynamic information using
the DBN proposed in Figure 4-1. The figure sketches a multi-level Bayesian filter
for state estimation where the bottom level contains the raw images and the upper
level the filtered decision. In general, the measurement (𝑧𝑘) is a real valued repre-
sentation of the SVM classifier applied to set of features 𝐹𝑘 extracted from the 𝑘𝑡ℎ
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Figure 4-1: Dynamic Bayesian Network for smoothing the decision process.

frame 𝐼𝑘. The state 𝑥𝑘 ∈ 𝑅2 is the filtered SVM confidence enriched with its speed:
𝑥𝑘 = [𝑓(𝐹𝑘), 𝑓(𝐹𝑘)]. Finally, ℎ𝑘 is the binary decision based on the filtered value of
the state: ℎ𝑘 = 𝑠𝑖𝑔𝑛(𝑥𝑘[0] + 𝑡ℎ). The latter allows 𝑡ℎ to take values different from 0, in
order to capture the effects of the dynamic filter to the decision threshold of the SVM.
The dotted line of Figure 4-1 is drawn to illustrate the possible filtering at features level,
as discussed at the beginning of the chapter. However, in our case only the state of the
system is filtered. The remaining part of this section briefly introduces the SVM nota-
tion, the dynamic filtering, and the heuristic tuning of the DBN parameters. See [21] for
extra details about the mathematical formulation of the SVM and the dynamic filter.

i) Support Vector Machine: Let’s assume a dataset composed by 𝑁 pairs of training
data: (𝐹1, 𝑦1), (𝐹2, 𝑦2), . . . , (𝐹𝑁 , 𝑦𝑁 ), with 𝐹𝑖 ∈ 𝑅𝑝 and 𝑦𝑖 ∈ {−1, 1}. Equation
(4.1) defines a classification hyperplane and equation (4.2) its induced classification rule,
where 𝛽 is a unit vector. Assuming that the classes are not separable then the values
of 𝛽 and 𝛽0 are the solution of the optimization problem given by (4.3), where 𝜉 =

(𝜉1, 𝜉2, . . . , 𝜉𝑁 ) are referred to as the slack variables, and 𝐾 is constant.
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{𝐹 : 𝑓(𝐹 ) = 𝐹𝑇𝛽 + 𝛽0 = 0} (4.1)

𝐺(𝐹 ) = 𝑠𝑖𝑔𝑛(𝑓(𝐹 )) = 𝑠𝑖𝑔𝑛(𝐹𝑇𝛽 + 𝛽0) (4.2)

min
𝛽,𝛽0

||𝛽|| subject to: 𝑦𝑖(𝐹𝑇
𝑖 𝛽 + 𝛽0) ≥ 1 − 𝜉𝑖, ∀𝑖, (4.3)

𝜉𝑖 ≥ 0,
∑︁

𝜉𝑖 ≤ 𝐾

For the hand-detection problem we use the signed distance to the classification hyper-
plane, 𝑓(𝐹𝑘), as the measurement (𝑓(𝐹𝑘) is denoted as 𝑧𝑘 in the DBN diagram, using
the common notation for measurements in Bayesian filtering), where 𝐹𝑘 is a global fea-
ture extracted from the 𝑘-th frame. It is important to note that the signed distance to the
decision boundary 𝑓(𝐹 ) gives both a description of the result 𝐺(𝐹 ) of the classification
(i.e. 𝑠𝑖𝑔𝑛(𝑓(𝐹 ))) as well as its level of certainty. In addition, augmenting the state with
the speed (𝑓(𝐹 )) would allows us to control sudden variations of such confidence. In
some sense the DBN is thus self-aware of how good the classification is evolving, and
can introduce some feedback mechanism to compensate for poor classification. This can
be seen ad an implementation of the reward mechanisms described in chapter 3, where
framework of Cognitive Control was introduced.

ii) Kalman Filter: Once the certainty level from the SVM is extracted, we address
the problem of transferring and stabilizing that measurement from time to time. This
strategy aims to reduce the number of wrong decisions caused by little variations in the
features between frames. For this purpose we use a discrete linear Kalman filter. In
general notation, the process and measurement model is given by (4.4), where 𝑥𝑘 ∈ R𝑛

is the state and 𝑧𝑘 ∈ R𝑚 is the measurement. The matrix 𝐴𝑛×𝑛 relates the state at
previous step, 𝑥𝑘−1, with the state at current step, 𝑥𝑘. The matrix 𝐻𝑚×𝑛 relates the
state with the measurement. Finally, 𝑤 and 𝑣 are the process and measurement noise
respectively, which are assumed Gaussian with zero mean and covariances 𝑄𝑛×𝑛 and
𝑅𝑚×𝑚 respectively. In our case 𝑛 = 2 and 𝑚 = 1, 𝑥𝑘 is then a two dimensional vector,
whose first component contains the decision certainty and the second its changing speed.
At this point the binary decision, ℎ𝑘, is calculated using 𝑠𝑖𝑔𝑛(𝑥0 + 𝑡ℎ), which as already
mentioned, is equivalent to allow changes in the original SVM decision threshold.

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘, 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (4.4)
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Based on these equations, the prediction stage is given by (4.5), which, using the current
values of �̂�𝑘−1 and 𝑃𝑘−1 approximates their next values �̂�−

𝑘 and 𝑃−
𝑘 . 𝑃𝑘 is the error

covariance at time 𝑘 and �̂� is an estimator of 𝑥.

�̂�−
𝑘 = 𝐴�̂�𝑘−1, and 𝑃−

𝑘 = 𝐴𝑃𝑘−1𝐴
𝑇 + 𝑄 (4.5)

Once a new measurement is available the values of 𝑥𝑘 and 𝑃𝑘 are updated using (4.6),
where 𝐾 is known as the Kalman gain.

𝐾𝑘 = 𝑃−
𝑘 𝐻𝑇 (𝐻𝑃−

𝑘 𝐻𝑇 + 𝑅)−1

�̂�𝑘 = �̂�−
𝑘 + 𝐾𝑘(𝑧𝑘 −𝐻�̂�−

𝑘 ) (4.6)

𝑃𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃−
𝑘

At this point it is possible to use �̂�𝑘 and 𝑃𝑘 for a new predicting stage. In the DBN,
�̂�𝑘 is a two dimensional vector, and is used to decide the value of ℎ𝑘 by taking ℎ̂𝑘 =

𝑠𝑖𝑔𝑛(�̂�𝑘[0]) (as already mentioned, this is equivalent to have a decision threshold equal
to 0).

Ultimately, extracted features which are really close to the decision boundary can jump
from one side to the other in consecutive frames, being their (signed) measured distance
𝑧𝑘 slightly positive or slightly negative. Filtering such a distance together with its varia-
tion significantly reduces binary classification hopping as shown in the next section.

iii) Tuning the DBN: Within the general framework presented above, there are two sets
of parameters to be estimated. The first set are the parameters defining the classification
hyperplane of the SVM, namely 𝛽 and 𝛽0. These parameters are estimated using the
training dataset and the SVM implementation of sklearn library [178] for python . The
second set are the Kalman filter parameters and the decision threshold, namely 𝑄,𝑅

and 𝑡ℎ. The tuning of the parameters of a dynamic filter is a widely explored field, and
different approaches are usually followed according to the requirements of the system,
restrictions in the measurements, and the ground truth availability.

Following the work of [1] the main idea behind the tuning procedure is to decompose
the joint distribution of the system 𝑝(𝑧0:𝑇 , 𝑥0:𝑇 , ℎ0:𝑇 ), using the Bayesian notation, and,
given the data availability and characteristics of the marginal distributions, find the op-
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timal values of the parameters. In our case the more appropriated approach, taking
advantage of the ground truth, and given the non-differentiability the binary decision
boundary, is to minimize the residual prediction error in an heuristic way. With this in
mind we look to minimize the squared error of the DBN decisions, defining the opti-
mization problem as (4.7).

In our case the more appropriated approach, taking advantage of the ground truth, and
given the non-differentiability of ℎ𝑡 = 𝑠𝑖𝑔𝑛(𝑥𝑡), is to minimize the residual prediction
error in an heuristic way. In our formulation we look to minize the squared error of
the DBN decisions, so the optimization problem could be stated as (4.7). A common
approach to solve this problem is to use a method like Nelder-Mead simplex (NM) al-
gorithm to find a solution close to an initial solution. NM is a numerical method widely
used to solve optimization problems when there is not knowledge about the derivatives
of the objective function. It has been proven to be a good approach finding local opti-
mals close to an initial point. Under the absence of intuition about the initial point, the
authors in [45] suggest to use an combination of a basic Genetic Algorithm (GA), to find
some initial points, and latter improve them using NM.

< 𝑄,𝑅, 𝑡ℎ >= arg min
𝑄,𝑅,𝑡ℎ

𝑇∑︁
𝑘=0

(ℎ𝑘 − ℎ̂𝑘)2 (4.7)

This optimization problem is usually faced using a method like the Nelder-Mead simplex
(NM) algorithm to find a optimal solution close to an initial solution. Under the absence
of intuition about the initial point, the authors in [45] suggest to use a combination of
a basic Genetic Algorithm (GA), to find some initial points, and later improve them
using NM. In our case we design a classical GA where each genome is an instance
of the parameters to be optimized, and each generation contains 100 genomes. The
algorithm starts with an initial population of 100 random genomes to select the best 4,
named parents. The subsequent generation is then composed by two parts. The first 64

genomes are crossovers: combinations of the parents, and the remaining 36 genomes
are mutations: random modifications of the parents. In the mutation stage, the parents
are selected randomly, and each element is modified with a probability of 0.5. Once
the algorithm achieved an acceptable decaying rate of the objective function, the 4 best
genomes among all the generations are used as initial points in NM. The best of the NM
results is selected as the optimal combination.
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4.4 Results

The results presented in this section are two-fold. First, we introduce two different opti-
mization cases for the proposed filter. Second, we show how the DBN approach consid-
erably improves the performance of the naive HOG-SVM detector (detailed results are
presented for the best optimization problem only, but they enhancement is significant
even in the worst case).

The Kalman filter is formulated as a kinematic model of the “position” (distance to the
separation hyperplane) enriched with the speed, and a sampling rate ∆𝑡. Equation (4.8)
shows the process and measurement model, where 𝑤𝑘 ∼ 𝒩 (0, 𝑄) and 𝑣𝑘 ∼ 𝒩 (0, 𝑟).
There is not exact knowledge of the differential equation regulating the dynamic process,
thus it is not possible to precisely state the law that moves the decision back and forth the
decision boundary. Actually, it is not known if such differential equation exists or can be
solved in closed form. For this reason, we borrow from physics a constant force model,
which we think is a good starting point. This is equivalent to suppose there is some
constant (oscillating) force that keeps the features away from the decision hyper-surface
or make them cross it, with a constant acceleration 𝑎.

[︃
𝑥𝑘

𝑥𝑘

]︃
=

[︃
1 ∆𝑡

0 1

]︃[︃
𝑥𝑘−1

�̇�𝑘−1

]︃
+ 𝑤𝑘, and 𝑧𝑘 = [1, 0]

[︃
𝑥𝑘

𝑥𝑘

]︃
+ 𝑣𝑘 (4.8)

More in detail, the first equation in (4.8) models an exact constant acceleration, where 𝑎
is the effect of a control input which generates exactly the time-dependent noise term. On
the other hand, employing a state augmented with the second derivative as well, would
allow small variations of 𝑎, accounted for in the noise term 𝑤𝑘. In our optimization
framework, this is equivalent to parametrize each of the elements of 𝑄. In this case
the genomes are given by instances of [𝑄1,1, 𝑄1,2, 𝑄2,1, 𝑄2,2, 𝑟, 𝑡ℎ], and the elements
of each crossover are selected randomly from one of the current parents. In the second
optimization case, we suppose instead that the acceleration is constant, and the matrix
𝑄 is factorized isolating the sampling rate as in (4.9). In this case the genomes are of
the form [𝑞, 𝑟, 𝑡ℎ] and the crossovers are all the possible combinations of the current
parents. To keep control of the search space we bound the elements of 𝑄 as well as 𝑞

and 𝑟 to move between 0 and 1000. The decision criteria 𝑡ℎ is bounded between −0.5

and 0.5. The number of iterations is set to 20. To evaluate the objective function for
each combination we merge the testing videos and calculate the overall accuracy under
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the second strategy of Table 4.3. We point out that the second strategy is used because
of computational advantages and to keep the training and tuning process independent of
the testing videos.

𝑄 = 𝑞 *

[︃
Δ4

𝑡

4
Δ3

𝑡

2
Δ3

𝑡

2 ∆2
𝑡

]︃
(4.9)

From the tuning process of the two cases presented above we found that the best accuracy
is achieved for the genomes
[+1.15𝑒−9,+1.39𝑒−7,+8.72𝑒−8,+2.07𝑒−5,+60.78,−7.63𝑒−2]

[+0.039,+32.54,−0.151]

for the general and factorized case respectively. The final number of frames misclassified
by each case are 3505 and 3391 over a total of 220610. As a comparison, the total of
misclassified frames using naive HOG-SVM is 18211. It is remarkable the fact that both
optimization scenarios reach a similar value in the objective function, validating the use
of the constant acceleration model to reduce the flickering in the decision. The remaining
of this section present more in detail the results achieved by the factorized case over the
testing videos. Figure 4-2 shows, in red line, the measurement 𝑧𝑘 and, in blue line, the
filtered state 𝑥𝑘. The horizontal axis is the decision threshold. Taking the value of 4, 5,
6 (-4, -5, -6) the figure shows the ground truth, the decision of the HOG-SVM method
and DBN, respectively. These decisions takes positive values if there are hands and
negative if not. The noisy movements of 𝑧𝑘 confirm the dependence of the measurement
to little changes between frames. As it is intended, the Kalman filter reduces the noise
and preserve the trend of 𝑧𝑘.

It can be noted from the pointwise decisions of HOG-SVM (Dec. HOG-SVM) that it is
difficult to obtain continuous segments of the video with or without hands. This effect
is the consequence of the measurement noise changing frequently the sign of 𝑧𝑘. Once
the noise is reduced using the DBN, the decisions stabilizes and continuous segments
appear. It is particularly remarkable the performance of the DBN in the Office and the
Bench sequences. However, because of the poor performance of the HOG-SVM, the
DBN misclassifies long segments in the Kitchen and the Coffee bar sequences. The
poor performance of the HOG-SVM in these sequences can be explained by the 3D
perspective created by the table, which creates lines in the same positions and directions
of those created by the hands.

Table 4.4 summarizes the performance for each location of the dataset. In total the DBN
improves the number of true-positives by 5.6 percentage points, moving from 76.4%
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Figure 4-2: Performance of the DBN in each of the locations in the UNIGE-HANDS
dataset.
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Table 4.4: Comparsion of the performance of the HOG-SVM and the proposed DBN.

True positives True negatives

HOG-SVM DBN HOG-SVM DBN

Office 0.893 0.965 0.929 0.952
Street 0.756 0.834 0.867 0.898
Bench 0.765 0.882 0.965 0.979
Kitchen 0.627 0.606 0.777 0.848
Coffee bar 0.817 0.874 0.653 0.660

Total 0.764 0.820 0.837 0.864

to 82.0%. The number of true-negatives is improved by 2.7 percentage points, chang-
ing from 83.7% to 86.4%. The only performance which suffer a reduction is the true-
positives of the Kitchen. This reduction is explained by a long segment (Figure 4-2
between second 150 and 250) in which the measurements are switching between pos-
itive and negative values with no trend. An extra analysis of the corresponding video
validates the hypothesis of the 3D perspective created by the used table, and points out
an interesting research idea regarding the fusion of color and shape features to deal with
this kind of scenarios. A similar case is found in the last segment of the Coffee Bar
location, which despite showing an improvement of 0.7 percentage points in the true-
negatives, is one of the worst performing. In all the other scenarios the improvement
is remarkable. Particularly, the true-positives of the Bench location is the one with the
largest improvement (11.7 percentage points). The improvement in the true-positives of
the Office (7.2 percentage points) and the true-negatives of the Kitchen (7.1 percentage
points) are also noteworthy. Based on these improvements we validate the Kitchen and
Coffee Bar locations as the more challenging in the UNIGE-HANDS dataset.

4.5 Conclusions and future research

This chapter presents the UNIGE-HANDS dataset for hand-detection and extends a
state-of-the-art method proposed in [19] incorporating a dynamic perspective. The dataset
is recorded in 5 different locations and guarantees realistic conditions like, changes in
the illumination, occlusions and fast camera movements. Additionally, the dataset is
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divided in training and testing videos to guarantee fair comparisons of coming methods.

To validate the consistence of the dataset with previous studies we evaluate the state-
of-the-art method using cross validation, as suggested in [19, 21], and using the testing
videos of the dataset. Three conclusions arises from the results: i) The dataset is chal-
lenging enough, and the testing videos are a good approach to avoid the bias in the cross
validation results, ii) Little variations between frames highly affects the performance
of the existing frame-by-frame hand-detectors, iii) The performances reported validates
the results of previous studies on which SVM-HOG is the best combination for hand-
detection.

The HOG-SVM frame by frame approach is extended using a Dynamic Bayesian Net-
work where the dynamic part is carried by a Kalman filter with a constant acceleration
model. The parameters of the KF, as well as the decision threshold, are tuned using a ge-
netic algorithms and the Nelder-Mead simplex algorithm. The DBN is evaluated in each
of the dataset locations and its performance is presented as the baseline to be used with
the UNIGE-HANDS dataset. We highlight the model selection as an interesting research
line that could lead to further improvements in the performance of the classifier.
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Chapter 5

Hand Segmentation

After detection has taken place, answering the yes-or-no question using global features
and classifiers, the hand-segmentation level locates and outlines the hands’ region in a
positive frame using low level features like colour under an exhaustive local classifica-
tion framework [134, 200, 160].

This chapter includes some stand-alone pieces of work, each based on a published pa-
per. These are cited at the beginning of each dedicated (sub)section. More in detail,
section5.1 analyses the extent to which color can be discriminative to segment hand at
a pixel level. Section 5.2 introduces Superpixels as a powerful strategy to divide an im-
age into meaningful contiguous regions. A novel fast superpixel method is presented in
5.2.1; although it is not applied to egocentric vision, it represent an effective general way
of accomplishing the segmentation step. Eventually, an attempt to optimize this class of
algorithms is discussed in subsection 5.2.2; result are presented for hand segmentation
in first person videos.

5.1 Pixel-wise colour-based segmentation

Skin colour is definitely the most distinctive and significant feature to be exploited to
segment hands, being also one of the most common used in literature. After concentrat-
ing on RGB colour for a while [106], researchers realized that other colour spaces such
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as L*a*b, HSV [174] and YCbCr [242] proved to be more suitable for colour-based seg-
mentation, not only for hands [163]. Various models have been proposed for capturing
the information carried by colour, the most common being GMM [236].

However, we realized that colour alone does not bring enough information to reliably
segment hands, or better, to reliably segment hands only. For this reason we exploit
optic flow information in order to filter out false segmented blobs, by, roughly speaking,
subtracting the global motion of the camera where possible. The way skin-like coloured
targets from the background are removed will be explained in what follows1.

Colour

Although a GMM better captures complex variations of skin colour due to suntan, gen-
der, age etc. [236] we have argued that for a single user a single Gaussian is enough
to satisfactorily grasp the relevant colour information. The space which better shows
clustering of skin pixels turns out ot be, from our experience, the CbCr subplane of
YCbCr.

(a) (b)

Figure 5-1: Experiment: hand colour characterization.

The experiment that was carried out is relatively simple and it is depicted in Figures 5-1,
5-2 and 5-3. The device used is a GoPro Hero, outputting a 848x480 video at 50 fps
(bitrate is approximately 8000-9000 kbps). Many video sequences were shot, framing
a slightly moving hand and gradually changing luminosity in the environment as shown
in Figure 5-1. It can be noticed how illumination conditions were stresses to a good
extent. Statistics were calculated over the manually drawn red box (the box is drawn in
the first frame; it is then checked that it only encompass skin pixels through the video

1The results presented in this section have been published in [160].
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sequence). The typical resulting colour histogram for a generic frame is shown in Figure
5-2. As one can see very peaked distribution appear for the Cb and Cr channels, while
a changing luminosity results in a larger Y histogram. Mean and standard deviation
were calculated for each channel for each frame. Means are plotted in Figure 5-3 for
one of the five 1500-frame sequences. Standard deviations are always around 3 (2,95 on
average) for the Cb channel and around 4 (4.3 on average) for the Cr channel. It can be
seen the extent to which illumination was altered.

Figure 5-2: Histogram of hand pixels’ colour (relative to a single frame, ROI is shown
in Figure 5-1). Blue line is Y channel, green is Cr and red is Cb.

Figure 5-4(a) shows how the vectors (𝜇𝐶𝑏, 𝜇𝐶𝑟) cluster in the (𝐶𝑏,𝐶𝑟) plane. The
covariance matrix of the 2d distribution clearly have eigenvectors which are not parallel
to the axis, thus we opted for a bi-dimensional Gaussian to describe the colour model,
instead of two separate Gaussians, one for each channel.

Figure 5-4(b) shows instead how the scaled feature (Cb/Y,Cr/Y) cluster along what
seems to be a straight line (three different hands, three different coefficient). This model
does not introduce much improvement, thus we set aside this observation for future
works which may include classifying hands sides based on colour.

The model was test on several sequences shot while performing different activities, like
drawing, writing on a whiteboard, typing. Figure 5-5 (a) shows a sample frame. Figure
5-5 (b) shows colour-based segmentation using a single Gaussian. Given a model (𝜇,Σ),
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Figure 5-3: Average hand pixels’ colour frame by frame, changing illumination in the
scene

segmentation is obtain by setting the condition

(𝑥− 𝜇)𝑇 Σ−1(𝑥− 𝜇) ≤ 2, 𝑥 ∈ (𝐶𝑏⊗ 𝐶𝑟) ⊂ R2. (5.1)

It can be clearly seen that objects with skin-like colour (as the mouse pad for instance)
are segmented as well as the two hands in the proposed sequence. The way uninteresting
targets from the surrounding environment are filtered out is explain below.

Optic flow refinement

We propose that hands doing things hardly move jointly with the head, rather they show
different displacements from one frame to another. For this reason we employ optic flow
to estimate the average movement of the camera based on the flow vectors calculated
through the method proposed in [219] and exploiting the features proposed in [204] and
refined in [104]. This way, things moving disjointly from the head can be identified
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(a)

(b)

Figure 5-4: Colour based segmentation. (a) Clustering of Cb and Cr features (b) Clus-
tering of Cb/Y and Cr/Y features.

for they show different optic flow vectors associated to their interest points. Results are
shown in figure 5-6. The head is almost still, thus the majority of the flow vectors has
very little module and a direction which is opposite to the one towards which the head
is (slightly) moving. On the other hand the moving hand show marked vectors, which
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(a) (b) (c)

Figure 5-5: Colour based segmentation. (a) Sample frame (b) Colour-based segmenta-
tion (c) Optic flow-improved segmentation.

vectorially sum up their and head movements.

Blobs which show no interest points, or which flow is similar to the global one are
eliminated as shown in Figure 5-5(c). Unfortunately this leads in most frames to the
removal of the blob generated by the left hand, which lies still on the table. This suggest
that the proposed method works for hands which are acting relevantly only.

The two algorithms do not required massive computational resources, however the 50
fps of the GoPro camera are not supported. On average, frame processing time is around
50 ms.

Figure 5-6: Optic flow
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Discussion

An approach for hand segmentation in first person videos was proposed and tested on
sequences recorded with a GoPro wearable camera. Such an approach strongly relies on
the most natural feature usable for skin detection, namely colour. Fusion with camera
movement information, extracted from optic flow vectors allow for filtering undesired
detected blobs which are integral with the environment. Unfortunately this also leads
to the removal of inactive hand targets, which could be seen either as a negative or as a
positive feature.

5.2 Superpixel-based segmentation

There has passed nearly ten years since the concept of over-segmentation evolved to
the one of Superpixels (Fig. 5-7). The idea has matured and by now has been widely
explored within the computer vision community. Superpixel algorithms are meant to
group similar pixels into meaningful regions, or clusters, in order to create a higher-level
structure in an image. They capture similarities mainly by jointly considering colour and
spatial proximity and thus try to provide a semantic clustering of an image.

Figure 5-7: Trend for the interest in Superpixels along the last 10 years (Web searches).

Although the majority of image processing algorithms operate at pixel level, process-
ing higher-level representations (see Figure 5-8) can turn out to be more efficient. For
example, one can reduce the hundreds of thousands of pixels to hundreds or thousands
of superpixels while still maintaining very accurate boundaries of objects or other key
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features in an image, such as colour statistics. In fact, it is often even more convenient
to get rid of noisy (and often redundant) pixel-level information.

For these reasons, Superpixels methods have been exploited for many purposes, ranging
from segmentation to feature computation and are becoming a really popular prepro-
cessing tool in many computer vision applications. Just to mention some: foreground-
background segmentation [168], object localization [82], tracking (and extended track-
ing) [159] [233] [249]. By providing a mid level representation of an image, Superpixel
methods are also used in visual saliency detection [237], in order to extract relevant in-
formation from images. Eventually, Superpixels can be extended to Supervoxels, which
are widely employed in biomedical applications [140].

The majority of superpixel methods are segmentation-oriented and in fact the line be-
tween over-segmentation and superpixel-segmentation is not neat at all. [44] proposes
that superpixel segmentation is a particular oversegmentation which preserves a suffi-
cient amount of the salient features of its underlying pixel-level representation. This is
why superpixels can be exploited for different purposes other than segmentation; how-
ever, again, such a sufficient amount is extremely arbitrary, yet depending on the applica-
tion. We suggest that superpixel algorithms are simply a class of methods for extracting
arbitrarily higher level features from images.

There are several approaches to generating Superpixels. Each method can be considered
to perform better only depending on the kind of problem it is applied to. For instance,
graph-based methods such as [205] seem to provide better adherence to boundaries. On
the other hand, one may want to construct a graph out of a Superpixel grid in which
case enforcing Superpixels connections is an issue [162]. Also, some methods give
more regular cluster’s contours [130], while some older approaches construct irregular
shapes with inhomogeneous sizes [226]. State-of-the-art algorithms can be categorized
in 2 main groups, as either graph-based or gradient ascent methods. Graph-based ap-
proaches consider each pixel as a node in a network (or graph), connected to his neigh-
bours through edges. Weights of edges are related to pixel’s similarity in a given colour
space and Superpixels are generated by gradually cutting such overconnected graphs, by
minimizing some cost function defined over the whole image [203], or by finding mini-
mum spanning trees [75]. Gradient-descent-based algorithms start instead from a given
rough clustering of the image. Clusters are then refined iteratively until some global
convergence criterion is met [224], or after a fixed number of iterations [2].
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Figure 5-8: Superpixel methods provide a higher level representation of an image. Such
a representation is particularly suitable for segmentation purposes and in fact often used
to this end.

5.2.1 A Generative Superpixel Method

Superpixel methods have become popular in recent years as they provide an efficient
preprocessing tool for a manifold of computer vision applications. In this section, we
present a method based on a self-adapting and self-growing network, which is bred
starting from two random initialization seeds in the image. Such a network, which is
a modification of the Instantaneous Topological Map (ITM), is inspired to a Growing
Neural Gas (GNG) and like many other self adapting tools employs a Hebbian learning
framework. Key point in competitive learning is the definition of a suitable distance func-
tion, which we analyse in depth here. Distance is indeed the notion which allows to link
unsupervised competitive learning with segmentation, where cluster formation reduces
to node creation and adaptation within the exploration of a suitable multidimensional
input space.2

As already mentioned, state-of-the-art algorithms can be categorized in 2 main groups
as either graph-based or gradient ascent methods. The method here presented is indeed
based on the construction of a graph, and would thus fall in the first category. However,

2The results presented in this subsection have been published in [162].
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there is a substantial difference in how the graph is constructed. As already pointed out,
graph-based approaches are usually initialized with an overcomplete and overconnected
graph, which is progressively “disassembled”, or cut, according to a similarity criterion.
These approaches are usually quite computationally expensive as the graphs must be
walked through several times. Moreover, they often start form a regular lattice, well
aware of the fact that the final desired output is something not regular at all. This issue
can also be spotted in gradient-ascent-based methods, where moving far from the initial
regular clustering of the image may cost several iteration steps.

We therefore propose a Generative Superpixel (GSP) approach, which progressively,
and in one iteration only, “grows” a graph, starting from 2 initialization seeds, according
to inputs coming from the image. The network is generated by the inputs themselves,
following the Neural Gas approach [81], exploring the input space with no constraints.
More in detail, we modified the Instantaneous Topological Mapping Model for Cor-
related Stimuli (ITM) proposed in [105]. This network turns out to be more agile the
standard GNG as it does not require the maintenance of expensive averages accumulated
over time and the tuning of life parameters.

Inputs for the map are randomly extracted from the image and are constructed as a four
dimensional vector obtained by fusing spatial location and chrominance values of the
pixel. A weighted distance is presented which measures similarities in such a space,
in order to implement competitive unsupervised learning of the space structure. The
network is fed by randomly selecting input pixels, in order to avoid distortions given by
a raster scanning of the image. This also allows to obtain good results by employing
only a fraction of the total number of pixels.

We present a practical investigation on the proposed algorithm, together with a compar-
ison of the proposed method with the Simple Linear Iterative Clustering (SLIC) method
[2], which, to best of our knowledge, represents the current cutting-edge superpixel al-
gorithm, although based on a previous work [253]. A particular stress is given to the
parameter tuning part, which allows for an almost fair qualitative and quantitative com-
parison. Eventually, future research directions are also proposed.

Algorithm

We propose a new method for extracting superpixels, which is based on a wider concept
of space which we denote as image space. Namely, this space is a 2 + 3 vector space
which spans over the (𝑥, 𝑦) position of the pixels and 3 colour channels. To be more
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precise we explore a subspace of the image space for the practical implementation of the
algorithm, which in turn comes from a particular choice of the colour channels, i.e. the
(𝐶𝑏,𝐶𝑟) plane in the YCbCr colour space. However, many other colour (and spatial)
representations can be explored which may give similar results.

This choice is motivated by the fact that segmentation is often compromised by changes
in illumination over curved surfaces, the best example being objects’ borders, which
often show a dark pattern which is difficult to separate. YCbCr representation of colour
has been often exploited for segmentation thanks to its ability of separating luminance
from chrominance information [216] [160].

Four dimensional vectors are thus constructed as (𝑥, 𝑦, 𝐶𝑏, 𝐶𝑟) for each pixel. Such
vectors constitute the inputs to stimulate the proposed growing neural network, which is
presented in the following.

A neural network needs of course to be supplied with a distance in the input space. One
of the most common choices is of course the Euclidean distance, while sometimes the
Mahalanobis metric is employed in statistical analysis. The most suitable distance is
here a weighted distance, whose general expression for an 𝑁 -dimensional vector space
is given by

𝑑(x,y) =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

𝑎𝑖(𝑥𝑖 − 𝑦𝑖)2. (5.2)

Here 𝑎𝑖 is a vector of weights which has the dual purpose of normalizing colour and
spatial dimension and to control spatial compactness of the superpixels. It will be shown
how one parameter only is needed in practice to specify the 𝑁 -dimensional vector a

Within this framework, generating superpixels reduces to finding a graph which fits the
considered input image subspace. The construction of the graph is addressed in details in
the following. Superpixels are then nothing but the 2D projection of a 4D cluster of the
resulting trained network. Superpixels can be visualized in space as all the pixels which
has the minimum distance from a given graph node (with respect to all other nodes).

As it will become clearer in the following, the number of resulting superpixels cannot be
controlled directly, due to the self-growing (generative) and self-organizing nature of the
process. This can be seen either as a drawback of the method or as an additional freedom
of the network of fitting the input space. Anyway, superpixels’ dimension can be limited
by means the parameter 𝑟𝑚𝑎𝑥 of the ITM. This actually produces an implicit limitation
on the number of clusters, being the input space bounded in all its four dimensions.
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For what concerns the training of the ITM, we soon realized that segmentation results
are affected by how raster scanning of the image is performed. We tried to move around
this by exploiting space filling curves [185] to determine the ordering of the inputs.
However, the construction of such curves is quite expensive in terms of computational
resources. We eventually opted for a random exploration of the space, based on random
number generation (sampling from a uniform distribution over the image rectangle) as
explained in details in the next paragraphs. This is the reason why the ITM algorithm
had to be modified accordingly.

The ITM for sparse stimuli Back in 1999 an Instantaneous Topological Mapping
Model for Correlated Stimuli was presented in [105]. The idea was to overcome dif-
ficulties arising when considering sequences of highly correlated stimuli, such as tra-
jectories. The resulting method turns out to be computationally lighter and faster in
adaptation with respect to the standard Growing Neural Gas algorithm [81], basically as
it does not require the maintenance of expensive averages accumulated over time and
life parameters. In fact, two parameters only are needed, namely a shift parameter 𝜀 and
a resolution 𝑟𝑚𝑎𝑥. According to the authors 𝜀 could even be safely set to zero in the
original algorithm. This cannot be done here, as nodes must be given the possibility of
adapting to surrounding stimuli. Otherwise, one could come to the absurd situation that
a new node is triggered on an edge, without the possibility of shifting away. This would
end up in a superpixel centred on an edge.

We propose a slight modification of the ITM algorithm (Algorithm 5.1) for dealing with
sparse stimuli, as the original algorithm, as it is, prevents creation of new nodes inside
big spheres in the input space. This is because the input space was originally supposed
to be explored along continuous trajectories. Moreover, isolated nodes are here allowed,
as disconnected components in the graph are encouraged, as the should represent really
different areas and may have a semantic meaning, such as background-foreground or
may represent separate objects. Sparse inputs may cause huge Thales spheres to form
and prevent node formation in the original Node adaptation step: in fact, new node
insertion is regulated by the scale factor 𝑟 >𝑚𝑎𝑥 only here. The network is initialized
with 2 random seeds in the input space, i.e. 2 nodes with random weights, connected by
an edge.

In terms of computational complexity, the Matching step scales with the number of
neurons, which is increasing at training stage, but is bounded and can be implicitly
controlled by the parameter 𝑟𝑚𝑎𝑥. Edge adaptation scales with the average number of
neighbours, which is related to the dimensionality of the input data. This constitutes
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Algorithm 5.1: Modified ITM for sparse stimuli.
Data: input vector x; given distance 𝑑(·, ·); set of 𝑁 nodes with weights wi

Parameters: shift 𝜀; resolution 𝑟𝑚𝑎𝑥;
Result: Network adapted to the new stimulus x
1. Matching: find nearest neighbour 𝑛 and second nearest 𝑠 ;
Initialize 𝑑𝑛 = 𝑀𝐴𝑋_𝑉 𝐴𝐿 and 𝑑𝑠 = 𝑀𝐴𝑋_𝑉 𝐴𝐿− 1
for 𝑖 = 1 : 𝑁 do

𝑑 = 𝑑(x,wi);
if 𝑑 < 𝑑𝑛 then

𝑑𝑠 = 𝑑𝑛;
𝑑𝑛 = 𝑑;
𝑠 = 𝑛;
𝑛 = 𝑖;

else if 𝑑 < 𝑑𝑠 then
𝑑𝑠 = 𝑑;
𝑠 = 𝑖;

2. Weight adaptation:
wn = wn + 𝜀(x−wn) ;
3. Edge adaptation:
if 𝑛 = 𝑠 then

𝑛↔ 𝑠;

𝑁(𝑛): set of connected neighbours of 𝑛
for ∀𝑗 ∈ 𝑁(𝑛) do

𝑆(wn,wj): Thales sphere through wn and wi;
if 𝑤𝑠 ∈ 𝑆(𝑤𝑛, 𝑤𝑖) then

𝑛 = 𝑗;

4. Node adaptation:
if 𝑑(x,wi) > 𝑟𝑚𝑎𝑥 then

add new node 𝑚 with 𝑤𝑚 = 𝑥;
𝑛↔ 𝑚;

if 𝑑 = 𝑑(wn,ws) <
1
2
𝑟𝑚𝑎𝑥 then

remove node 𝑠 ;

an additional reason why we restricted the input image space to a four dimensional
subspace. All other steps are independent of the number of neurons involved allowing
the algorithm to execute fast even for large networks.

As already pointed out, two parameters only are needed by the ITM algorithm, namely
𝑟𝑚𝑎𝑥 and 𝜀. The threshold 𝑟𝑚𝑎𝑥 can be interpreted as a mapping resolution. The method
is substantially different from providing a learning rate as in the GNG, as nodes are
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created at a maximum speed of one per stimulus if inputs are too far apart. As nodes are
allowed to adapt by moving by a small amount, a criterion is provided to remove nodes
that are too close to each other. The threshold used is derived from 𝑟𝑚𝑎𝑥.

𝜀 can instead be seen as a smoothing parameter, which regulates weight adaptation. It
has a small value and, in principle, could have a different value for each of the four
coordinates, allowing different shifts in colour and space. This issue will be discussed
more in detail when addressing the problem of parameter tuning.

Space and Distance The ITM algorithm (Algorithm 5.1) is very general and its im-
plementation does not depend on the distance used. However, superpixels correspond
to clusters in the image-space, which is a four dimensional space. This presents a prob-
lem in defining a distance measure, which is not trivial. For our purposes, the standard
Euclidean distance is clearly not suitable: simply defining 𝑑(·, ·) to be the 4D Euclidean
distance in the (𝑥, 𝑦, 𝐶𝑏, 𝐶𝑟) causes non-consistent clustering behaviours for different
image sizes. A pixel’s colour is represented in the (𝐶𝑏,𝐶𝑟) colour subspace, whose
range of possible values is known. On the other hand, the pixel’s position may take a
range of values that varies according to the size of the image. For large images, spatial
distances outweigh colour proximity, giving more relative importance to spatial proxim-
ity. This is why a distance like the one proposed in equation 5.2 is employed here.

Actually, equation 5.2 can be extremely simplified in our case, by reducing the number
of parameters needed to one only:

𝑑(x1,x2) =
√︀

𝑑2𝑠 + 𝑎 𝑑2𝑐 . (5.3)

where

𝑑𝑠 =
√︀

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2,

𝑑𝑐 =
√︀

(𝐶𝑏1 − 𝐶𝑏2)2 + (𝐶𝑟1 − 𝐶𝑟2)2. (5.4)

Practically, there is no need of having different weights for the two colour channels, and
the same holds for the two spatial coordinates: the weight would be thus immediately
reduced to two only. The spatial weight can be further eliminated by means of an overall
multiplicative constant (which of course modifies the colour weight) that can be safely
set to 1, yielding equation 5.3.

As an intuitive explanation of how the weight 𝑎 works, Figure 5-9 shows results of
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ITM clustering for 𝑎 = 0 (i.e. 𝑎𝐶𝑏 = 𝑎𝐶𝑟 = 0): only space is considered and cells
reflect the homogeneous nature of a 2D even distribution of pixels. Figure 5-10 shows
results obtained by naively employing Euclidean distance (𝑎𝑥 = 𝑎𝑦 = 𝑎𝐶𝑏 = 𝑎𝐶𝑟 = 1):
spatial proximity of pixels still outweighs colour similarity, even though the silhouette of
the dog starts to take its shape. The ITM network is more irregular as it is the projection
onto two dimension of a map “living” in four. On the opposite hand, Figure 5-11 show
the weights configuration 𝑎𝑥 = 𝑎𝑦 = 0: pixels are clustered only based on colour
proximity: as a matter of fact only 3 clusters are formed, whose visual effect is very
close to that of a thresholding algorithm, which is not what we desired. The network
actually “lives” in the (𝐶𝑏,𝐶𝑟) space.

(a) 2D ITM network (b) ITM 2D Voronoi cells

Figure 5-9: ITM segmentation with 𝑟𝑚𝑎𝑥 = 60, 𝜀 = 0.005 and spatial distance only.

(a) 2D projection of the 4D ITM network (b) 2D projection of 4D clusters

Figure 5-10: ITM segmentation with 𝑟𝑚𝑎𝑥 = 60, 𝜀 = 0.005 and Euclidean distance.
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(a) A three-node ITM network (b) Colour clusters

Figure 5-11: ITM segmentation with 𝑟𝑚𝑎𝑥 = 60, 𝜀 = 0.005 and 2D colour distance.

To conclude this section, we point out that introducing the weight 𝑎 in equation 5.3 is
equivalent to employ the scaled colour features

𝐶𝑏′ =
√
𝑎 𝐶𝑏, 𝐶𝑟′ =

√
𝑎 𝐶𝑟, (5.5)

or, equivalently, scaled spatial features

𝑥′ = 𝑥/
√
𝑎, 𝑦′ = 𝑦/

√
𝑎. (5.6)

Tuning the weight 𝑎 is then equivalent to choosing a suitable feature vector to be given
as input to the ITM.

Input randomization and thinning As already mentioned, ordering of the input vec-
tor sequence for the ITM represents an issue, as results are strongly affected by correla-
tions brought in by raster scanning of the image. Covering the image with a space filling
curve has proven to be effective in many applications facing this issue, however, their
construction is quite expensive in terms of computational load.

Opting for a random exploration of the space turns out to be a suitable choice. Random
number generation is fast and can guarantee inputs which are evenly distributed over
the image. We sample from a uniform distribution over the image rectangle to select
pixels, which have thus the same probability of being extracted. Keeping track of all
pixels extracted, to be sure that a pixel is not extracted twice, would imply a huge set
of conditional statements which would slow down significantly the algorithm. However,
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the probability of multiple extractions is quantifiable, being expressed by a binomial
distribution mass function.

𝑓(𝑘;𝑛, 𝑝) =

(︂
𝑛

𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑛−𝑘. (5.7)

The probability of extracting the pixel twice (𝑘 = 2) is even lower if we extract only
a small fraction 𝑓 of the total amount of available inputs. Here 𝑝 = 1/𝑁 , where 𝑁 it
the total number of pixels in the image (as we extract from a uniform distribution) and
𝑛 = 𝑓 · 𝑁 with 𝑓 < 1. As a matter of fact, the result of picking the same value more
than once can be simply seen as a very small amount of noise added while training the
network.

Thanks to this observation, we realized that using only one tenth of the available pixels
still provides a well trained network, while consistently speeding up the algorithm. The
trade-off between the noise injected and the boost in speed is positive. By the way, using
a small percentage of pixels for Neural Network training has also proven to be effective
in other contexts, such as shape fitting for object detection [216].

Postprocessing As other superpixel algorithms (e.g. [75] and [2]), our method does
not enforce spatial connectivity explicitly. After the network is trained and all pixels in
the image (also the ones that were not used for training the network) are assigned to its
nearest ITM node, some spatially isolated pixels may appear (figure 5-12), which do not
belong to their surrounding connected component. This issue arises as the representation
of the image in the image space is not a surjective map nor has a simply connected range
in the (𝑥, 𝑦, 𝐶𝑏, 𝐶𝑟) codomain. The 4D clusters are thus not guaranteed to be connected
and so are their 2D projections, although in principle the Voronoi cells generated by the
ITM are connected (in a simply connected space). This happens because colour is not
a continuous function of space over the image, namely the image representation is not
guaranteed to be dense in the image space. Intuitively, there is spatial contiguity between
pixels but colour contiguity is not guaranteed at all.

Experimental results

Some partial results have been already presented in the previous section. In the following
we provide a discussion on parameter tuning and an analysis of the performance of the
proposed algorithm.
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(a) GSP: 𝑟𝑚𝑎𝑥 = 50, 𝜀 = 0.1, 𝑎 = 2 (b) SLIC: 𝑁𝑐 = 30, superpixels = 40

Figure 5-12: Segmentation without postprocessing step: isolated pixels are a common
issue, especially along superpixel’s borders.

Parameter tuning Parameter tuning is a matter of fact for any algorithm. This allows
parameters to be set optimally, as no algorithm just work as it is. Also, for a fair com-
parison of methods, it is often necessary to specify which choice of parameter has been
done.

The 3 parameters appearing in the proposed algorithm are summarized in table 5.1. We
show in this section that some constraints can be worked out, which reduce the num-
ber of parameters to 2 only. Moreover, a specific combination of the two remaining
parameters can be given the interpretation of the number of superpixels 𝑁𝑠𝑝, thus giv-
ing (implicit) control over such a quantity, which is often considered influential in a
superpixel algorithm and allows for a comparison with [2], which has 𝑁𝑠𝑝 as an explicit
parameter.

The size 𝑆 of the 4D space where input are extracted for the ITM training is given by the
product of the maximum range of the four coordinates, namely 𝑆 = 𝑤 · ℎ · 2562, where
𝑤 and ℎ are the image’s width and height respectively. However, the introduction of the
parameter 𝑎 can be seen as a way of “stretching” colour features by a factor

√
𝑎.

Thus, if we fix 𝑎, 𝑆 becomes 𝑆 → 𝑎 ·𝑆 = 𝑎 ·𝑤 ·ℎ ·2562. By approximating a superpixel
as a 4D hypercube of volume 𝑉𝑠𝑝 = (2𝑟𝑚𝑎𝑥)4, the volume 𝑆 should be able to host
approximately

𝑁𝑠𝑝 =
𝑆

𝑉𝑠𝑝
=

𝑎 · 𝑤 · ℎ · 2562

16 · 𝑟4𝑚𝑎𝑥

(5.8)

superpixels. However, typical image’s colour histograms do not span over the whole
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Table 5.1: Parameters appearing in the Generative Superpixel method

Parameter Meaning

𝑎
- Weight in the distance

- Colour features’ scaling

𝜀 - Adaptation capability of the nodes

𝑟𝑚𝑎𝑥 - Resolution of the network

8 bit range of 256 values: the value 𝑁𝑠𝑝 thus represents an upper bound on the actual
number of superpixels. We will refer to it as to 𝑁𝑚𝑎𝑥 instead of 𝑁𝑠𝑝. For example, the
combination of parameters considered in figure 5-12 should give approximately a limit
of ∼ 100 superpixels (the original image is 320 x 240). Indeed, only 29 superpixels (one
third) can be spotted in the image, as two dominant colours only are present and a large
input space region is not hit by any stimulus.

The meaning of 𝜀 becomes clear from the second step of algorithm 5.1. A big 𝜀 makes
the adaptation of a neuron very unstable, as its weight will be drastically modified by the
last input hitting it. On the other hand a too small 𝜀 makes the node slowly adapting to
inputs, preventing us from reaching our main goal of growing an adapting network over
the image space. Another way of writing the adaptation equation is

∆𝑤𝑛 = 𝜀(𝑥− 𝑤𝑛). (5.9)

Roughly, as the image space is able to host a network of 𝑁𝑚𝑎𝑥 nodes and as we take
only a fixed fraction 𝑓 = 0.10 of the available pixels for training, we can imagine that
each neuron will, on average, be hit at most by a number of inputs equals to

𝑛ℎ𝑖𝑡𝑠 =
𝑓 · 𝑤 · ℎ
𝑁𝑚𝑎𝑥

= 𝐶 · 𝑓 · 𝑟4𝑚𝑎𝑥

𝑎
, 𝐶 = 2−12 (5.10)

Noticeably, this number is independent of the dimension of the image, depending only
on the parameters of the network.

If we suppose that the stimuli 𝑥 hitting the node 𝑛 are uniformly distributed inside the
4-sphere 𝑆4(𝑤𝑛, 𝑟𝑚𝑎𝑥) (centred in 𝑤𝑛 and with radius 𝑟𝑚𝑎𝑥), there exists an average
shift |𝑥 − 𝑤𝑛|, which will be the radius of the 4-sphere with a volume which is half of
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that of 𝑆4(𝑤𝑛, 𝑟𝑚𝑎𝑥):

< |𝑥− 𝑤𝑛| >≈ 4

√︂
1

2
𝑟𝑚𝑎𝑥. (5.11)

We would like the weight of neuron 𝑛 to resemble the average of all the inputs hitting
it at the end of the adaptation step. This can be obtained by “weighting” the average
contribution (eq. 5.9) with a factor 1/𝑛ℎ𝑖𝑡𝑠. That is, we can suppose

𝜖 ≈ 𝑎

𝐶 · 𝑓 · 𝑟4𝑚𝑎𝑥

(5.12)

This way, we get a constraint which allows us to get rid of one of the three parameters.
As a practical example, the configuration of parameters in figure 5-13 is consistent with
eq. 5.12.

Performances Main strength of our method lies in its speed. This is obtained thanks
to the fact that it does not requires multiple iterations as 𝑘-means based algorithms such
as [2]. In addition, superpixel’s centres are built by training a network by sampling only
a fraction of the total available training data.

Execution times for the examples given in this work are given in table 5.2. We employ an
Intel Xeon 2.66 GHz processor with 4 GB RAM for our tests and the c++ code provided
by the authors of SLIC.

Results are comparable as the number of generated superpixels is the same. The weight
parameter 𝑎 of GSP is related to the two parameters of SLIC by the following equiva-
lence

𝑎 → 𝑤 · ℎ
𝑁2

𝑐 ·𝑁𝑠𝑝
, (5.13)

where 𝑁𝑠𝑝 is the desired number of superpixels and 𝑁𝑐 is a free parameter. Creating
such correspondence allows for a fair comparison.

As it can be noticed from Figure 5-13, result of the two algorithms are comparable for
a medium number of superpixels. However, SLIC tends to fail for a small 𝑁𝑠𝑝 (Figure
5-14), while GSP gives surprisingly good results. On the other hand, SLIC looks more
accurate when the number of superpixels increases to 100, as depicted in Figure 5-15.
Here SLIC’s superpixels are less regular, adapting better to the shape. Moreover, many
borders in the green region are inexplicably irregular in GSP.
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Table 5.2: Execution time (milliseconds)

Test GSP SLIC

Figure 5-12. (320 x 240) 454 2052

Figure 5-13. (320 x 240) 545 2174

Figure 5-14. (320 x 240) 241 1227

Figure 5-15. (320 x 240) 900 2612

Conclusion and future research lines

In this work, we proposed a Generative Superpixel method. The algorithm lay on the
training of a self-growing and self-adapting neural network: such a network is a modi-
fication of the existing ITM map, which has been extended to cope with sparse stimuli.
The modified ITM explores the input image space and creates clusters in a multidi-
mensional space, based on a suitable definition of distance. Pixels are then assigned to
clusters based on proximity to neurons, relying on the very same distance used to train
the network. The projection onto the spatial coordinates of the obtained clusters is the
desired superpixel segmentation.

The algorithm is compared to the Simple Linear Iterative Clustering (SLIC) method,
showing comparable results, while significantly reducing segmentation time. GSP does
not provide direct control over the number of superpixels, however an upper bound is
given by a combination of its two parameters. Control over superpixel compactness is
provided by the parameter 𝑟𝑚𝑎𝑥. Extension to supervoxels or to other colour repre-
sentations of the image is straightforward: formulas can be easily generalized for three
colour channels and for supervoxels by simply adding extra dimensions. In addition, as
shown in figure 5-11, GSP can be used directly as an object segmentation algorithm by
neglecting spatial coordinates.

GSP offers a wide range of possibilities for future investigations, which were not in-
cluded in this work, starting from a quantitative analysis of its adherence to boundaries
and segmentation accuracy, given a ground-truth. The algorithm may also need some
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(a) GSP: 𝑟𝑚𝑎𝑥 = 50, 𝑎 = 2 (𝜀 = 0.013) (b) SLIC: 𝑁𝑠𝑝 = 30, 𝑁𝑐 = 35, 10 iterations.

Figure 5-13: Parameter comparison between GSP and SLIC superpixel methods. We
fixed 𝑟𝑚𝑎𝑥 = 50 and 𝑎 = 2 for the Generative Superpixel method. This result in
𝜀 = 0.013. The algorithm then generates 30 superpixels, which are set as a parameter in
SLIC. Setting 𝑁𝑐 = 35 in slic is then equivalent to setting 𝑎 = 2 in our method.

improvement for enhancing segmentation performances when considering a high num-
ber of superpixels.

Different and more exotic distance functions can be found, which give better segmen-
tation results. In particular, the idea of considering an image as a Riemann manifold,
where curvature is pointwise induced by colour, is interesting and deserves future deep-
ening

Eventually, an analysis of the stability of the algorithm along frames in a video sequence
could open the possibility of using the nodes of the neural network as point to be tracked
in an extended-tracking framework.

5.2.2 Video optimization of Superpixel algorithms

In this section, we propose a strategy for optimizing a superpixel algorithm for video sig-
nals, in order to get closer to real time performances which are on the one hand needed
for egocentric vision applications and on the other must be bearable by wearable tech-
nologies. Instead of applying the algorithm frame by frame, we propose a technique
inspired to Bayesian filtering and to video coding which allows to re-initialize superpix-
els using the information from the previous frame. This results in faster convergence and
demonstrates how performances improve with respect to the standard application of the
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(a) GSP: 𝑟𝑚𝑎𝑥 = 150, 𝑎 = 10 (𝜀 = 0.0008) (b) SLIC: 𝑁𝑠𝑝 = 6, 𝑁𝑐 = 14, 10 iterations.

Figure 5-14: SLIC breaks for small 𝑁𝑠𝑝 (setting 𝑎 = 10 in our method, is equivalent to
having 𝑁𝑐 = 14).

algorithm from scratch at each frame.3

Overview

Despite the prolific literature on the topic, the application of superpixels to video analysis
is still at his early stages and have been employed in first-person-vision only in [200]
for hand segmentation and tracking purposes. More in details, this work exploits the
by now consolidated Simple Linear Iterative Clustering (SLIC) algorithm proposed in
[2], by simply applying the method from scratch frame by frame. This turns out to
be quite slow, still not allowing real-time performances, required by egocentric-vision
applications. [187] actually provides a real time implementation of SLIC, but it needs a
graphic card to exploit GPU and the NVIDIA CUDA framework. Such implementation
is hardly portable to a wearable device.

Other attempts to provide fast superpixel algorithms are [206] and [67]. However, while
the first focuses again on single images and not on videos, the second sacrifices accuracy
for the sake of performance.

To the best of our knowledge, the only effective attempt to bridge the gap between Super-
pixels and video is addressed by [44], where a characterization of Temporal Superpixels
(TSPs) is provided. Here a complex generative model is proposed in an attempt of treat-
ing the video signal not as a simple sequence of images, but with a special stress on time.

3The results presented in this subsection have been published in [161].
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(a) GSP: 𝑟𝑚𝑎𝑥 = 30, 𝑎 = 2 (𝜀 = 0.1) (b)SLIC: 𝑁𝑠𝑝 = 100, 𝑁𝑐 = 20, 10 iterations.

Figure 5-15: For a high number of superpixels, the SLIC method provides a better super-
pixel representation, although execution time it high above GSP’s. In particular, many
borders in the green region are extremely irregular.

The method differs from the Supervoxels approach [239], which works well for actual
volumetric data (e.g. medical imaging), in that time is not simply treated as an extra
dimension. It is probably the first probabilistic model to represent superpixels. How-
ever, the method, although very effective, is far from providing real-time performances,
requiring tens of seconds for performing Bayesian inference over a single frame.

In this subsection we suggest a novel way of performing a smart re-initialization of su-
perpixels in consecutive frames, in order to optimize frame’s elaboration time. The pri-
mary goal is here to get closer to real-time video elaboration. The proposed approaches
take some inspiration from Bayesian filtering and from video coding. In particular, re-
sults are shown for SLIC [2], but they can be easily extended to other methods such as
[162] and with slight modifications to graph-based approaches as well.

Proposed method

In the next paragraph, we first briefly review SLIC in order to better explain the proposed
optimization methods.

SLIC SLIC considers a 5-dimensional feature vector for each pixel, composed of its
(𝑥, 𝑦) position, and its three 𝐿𝑎𝑏 colour channel values. The algorithm is initialized with
a fixed number of cluster’s centres, equally spaced and arranged in a regular grid of step
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𝑆 (refer to Figure 5-16). 𝑘-means clustering is then performed by searching for similar
pixel in overlapping 2𝑆 × 2𝑆 regions (here is the key to speeding up with respect to
standard 𝑘-means). Once each pixel has been associated to the nearest cluster, centres’
positions are adjusted to be the mean feature vector of all the pixels belonging to the
cluster. A residual error 𝐸 between the new and the previous cluster centre locations
is then computed. These steps are repeated iteratively until convergence. However, the
authors claim that 10 iterations suffice for most images.

In order to measure the amount to which SLIC’s performances can be improved, we
follow the original algorithm, by fixing a threshold 0 ≤ 𝐸𝑚𝑎𝑥 ≪ 1. We then measure
execution time (or, equivalently the number of iterations, which is directly proportional
as shown in Figure 5-17) needed for convergence.

2S × 2S

S × S
S × S

Figure 5-16: Unlike standard 𝑘-means algorithms, SLIC searches a limited 2𝑆 × 2𝑆
region only. The expected superpixels’ size is 𝑆 ×𝑆, as the initialization grid cells. 𝑆 is
derived from the image dimensions and the number of desired superpixels

Bayesian approach As we deal with videos, the most natural question we could ask
ourselves is: can we exploit the information carried by a frame to process the next in-
coming? And, if yes, how?

A very simple answer is given by the Bayesian filtering framework, also known as re-
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Figure 5-17: Execution time [ms] against average number of iterations required for con-
vergence: the relation is approximately linear. Data are provided in table 5.3.

cursive Bayesian estimation. This well known probabilistic approach aims at estimating
an unknown probability density function recursively over time using incoming measure-
ments and a mathematical process model. Its simplest analytical implementation, the
Kalman filter (KF) [109], is so widely employed that needs no introduction. Such filter
provides an efficient computational (recursive) means to estimate the state of a process,
in a way that minimizes the mean of the squared error. The filter is very powerful in
several aspects: it supports estimations of past, present, and even future states, and it can
do so even when the precise nature of the modelled system is unknown. In particular,
it consists of a prediction step, followed by an update step where the actual measure
is incorporated in the estimation. Many extensions have been developed for non-linear
equations and non-Gaussian noise (Extended KF, Unscented KF, Cubature Filter [10],
Particle Filter [189]).
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Figure 5-18: Graphical model (Dynamic Bayesian Network) for a Bayes filter.

The estimation of new cluster centres can be modelled as a Markov process (Figure
5-18), where the hidden state at discrete time 𝑘 is the set of all cluster centres x𝑘 =

[l𝑘,a𝑘,b𝑘,x𝑘,y𝑘] and the measurement 𝑧𝑘 is the whole 𝑘-th frame. Applying SLIC
independently on frames of a video is equivalent to skip the prediction step in a KF,
relying on measurements only. We here instead try to model the process entirely, as it is
common understanding that even a trivial prediction can remove a lot of noise from the
process.

Consider the general time-discrete process, identifying the dynamic model of the system
and the measurement model.

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1, (5.14)

𝑧𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘, . (5.15)

where 𝑝(𝑤𝑘) = 𝒩 (0, 𝑄) , 𝑝(𝑣𝑘) = 𝒩 (0, 𝑉 ). (5.16)

In a KF, 𝐴,𝐵,𝐶,𝐷 are matrices (both models are linear, though usually 𝐵 and 𝐷 are
zero) and the random variables 𝑤𝑘−1 and 𝑣𝑘 are the process and measurement noise
respectively (Gaussian, zero-mean).

As for the measurement model 𝐶 (modelling 𝑝(𝑧𝑘|𝑥𝑘)), we here assume it is the super-
pixel algorithm itself which links the state x𝑘 = [l𝑘,a𝑘,b𝑘,x𝑘,y𝑘] and the measure-
ment 𝑧𝑘 (the whole frame). In this perspective SLIC can be associated to 𝐶−1. It is not
a linear measurement model, although SLIC does preserve linearity to some extent, as
cluster centres 𝑥𝑘 are averages over a certain fraction of pixels values.

100



On the other hand, for what concerns the dynamics (𝑝(𝑘𝑘|𝑥𝑘−1)), we enforce a linear
model. Common practice when no knowledge on the actual dynamics of system is given
(e.g a complex moving camera scenario, as in our case), is to simply allow a sufficient
amount of noise over a constant state, i.e. 𝐴 = I. This means that we suppose that the
cluster centre in the following frame will be somewhere in the surroundings (namely, in
his previous position plus some shift extracted from 𝑝(𝑤𝑘)). We note that this is not far
from formulating SLIC as a Gaussian mixture as proposed in [44].

What we propose in this section is not a rigorous Bayesian state estimation (although we
generously draw inspiration from the Kalman filter framework). We rather suggest that,
instead of re-initializing the starting regular grid (Figure 5-16) in SLIC at each frame, a
more effective choice could be to try a guess. Common practice in KFs tells us that if
we do not have a clue on the precise dynamics of the problem, a still (statistically) good
option is to suppose the state to be the same as in the previous time instant (plus some
noise).

We are able to measure how better this new re-initialization method perform by evalu-
ating the number of iterations needed for convergence at each frame. As shown in the
next section, less iterations are needed, since, statistically, clusters centres are closer to
the actual ones and SLIC needs less iterations to converge.

To conclude this section, we would like to stress again what we propose is not a Kalman
filter, although it draws inspiration from it, in a not completely rigorous fashion, in
order to cope with the practical issue of speeding a superpixel algorithm up to real time
performances, which are needed for first-person vision applications.

Video coding approach A minor issue arises however when adopting the approach
proposed in the previous section. As shown in Figures 5-19 and 5-20, small rectangular
patterns appear in many superpixels after a while. The reason why these artifacts arise
is to be ascribed to the fact that, as shown in Figure 5-16, SLIC does not implement an
exact 𝑘-means clustering, but searches in a 2𝑆×2𝑆 window. Therefore, due to divergent
flows in the video scene, sometimes cluster centres are pull too far apart, leaving a
gap between adjacent windows, which is not searched. Such a gap has a fairly regular
shape, being delimited by the borders of two or more square boxes. Gaps’ pixels are
not elaborated in the current frame, and maintain the labels they were assigned in the
previous time instant. This issue mainly arises around object moving in contrast with
the general dynamic of the scene (e.g. hands performing gestures).

To overcome this drifting issue we adopt a strategy similar to the one exploited for
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similar reasons in video codecs such as h264 [234]. Here I-frames (Intra frames or
key frames) are employed to decode from scratch without reference to any other frame.
Similarly, we insert I-frames, where SLIC is applied from scratch, in order to prevent
the aforementioned drifting. In a Bayesian perspective, this is equivalent to regularly
cut the Markov chain and force the model with a new prior, namely SLIC’s standard
initialization grid.

We have found that sending I-frames at a ratio of 1/30 is usually enough. Increasing the
dimension of the window used by SLIC would be a solution, but it should be done in
an adaptive way, which would be quite expensive. In addition, the method should also
deal with superpixels’ births and deaths once windows’ sizes grow too big. The issue of
superpixels merging-splitting and birth-death mechanism is addressed in [44] and proves
to be extremely time consuming.

Results

We run experiments on the egocentric video dataset provided by Kitani and colleagues
[131]. The approximately six minute long video EDSH1.avi counts 11290 frames
and records the perspective of a single user along different indoor and outdoor scenes,
with really heterogeneous illumination conditions. Frames are 1280x720 pixels. SLIC
parameters are set as follows 𝑚 = 30, 𝑁 = 1000. Residual error is 𝐸 = 0.25 and it is
of course fixed for comparison purposes.

Table 5.3: Performances

METHOD
Execution Number of fps

time (ms) iterations

1. SLIC 537 17,6 1,9

2. NAIVE 74 3,1 13,5

3. NAIVE + INTRA 316 10,9 3,2

4. NOISE 256 10,1 3,9

5. NOISE + INTRA 393 13,4 2,5

Table 5.3 presents quantitative data averaged over the 11290 frames. Performances are
referred to the tests we run on an Intel Xeon 2.66 GHz processor with 4 GB RAM. Our
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code is publicly available at https://github.com/ClaudiuGeorgiu/VideoSLIC.
Applying SLIC from scratch at each frame results in an execution time of more than half
a second, which means not even 2 fps. In fact over 17 iterations are on overage needed
for having the 𝑘-means algorithm converge up to the residual error 𝐸.

By naively initializing SLIC’s centre states with the values outputted by the previous
frame (with no noise), produces the astonishing boosts in performances of almost 13
frames per second. This is to be ascribed to the fact that consecutive frames are ex-
tremely similar and, neglecting border effects and occlusions, superpixels require little
effort to be adjusted. However, results are corrupted by some drifting effects as shown in
Figure 5-19. The rectangular patterns or sharp angles appear after a while. This drifting
phenomenon is due to the fact that SLIC does not implement an exact 𝑘-means cluster-
ing, but searches in 2𝑆 × 2𝑆 windows, which can leave gaps in case of divergent flows.
The absence of noise in dynamic model makes the phenomenon even more evident.

The issue of rectangular patterns becomes less predominant when injecting Gaussian
noise in the dynamic model, as drifting is somehow mitigated by noise. Noise injection
has of course a computational cost as random Gaussian-distributed numbers must be
generated at each time step. In the test, noise was extracted from the distribution 𝒩 (𝜇 =

0, 𝜎 = 𝑆/5). The higher the noise, the lower the drifting effect although of course more
iterations are needed for convergence.

Inserting intra frames removes drifting effects both in the noisy and non-noisy case, at
the price of increasing on average the number of iterations needed for convergence. Here
again, the more frequently intra frames are sent, the slower the convergence. Results in
Table 5.3 are obtained by sending I-frames at a frequency of 1/30. However, the rate
at which intra frames are to be inserted can depend on several factors: Superpixels’
dimension, frame rate and Dynamics of the scene, to mention some. The algorithm is
not self-adaptive on this parameter, which must be fixed heuristically, finding a correct
trade-off between performance and other parameters.

Final considerations

In this subsection, we have presented a general framework for exploiting superpixels
algorithms in videos. The approach does not simply consist in Bayesian filtering of
cluster centres 5D positions, since the measurement model 𝑝(𝑧|𝑥) is embedded in the
superpixel algorithm itself. The practical drifting issue arising specifically in SLIC, due
to the non exact nature of the 𝑘-means algorithm is addressed by periodically giving
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Figure 5-19: Rectangular patterns appear after a while. This drifting phenomenon is due
to the fact that SLIC does not implement an exact 𝑘-means clustering, but searches in a
2𝑆× 2𝑆 window, which can leave gaps in case of divergent flows. The absence of noise
in dynamic model makes the phenomenon even more evident

Figure 5-20: The issue of rectangular patterns is less predominant when injecting Gaus-
sian noise in the dynamic model.
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new priors 𝑝(𝑥0) to the Bayesian filter. The inspiration comes from video coding where
I-frames are periodically sent precisely to avoid drifting effects.

Substantial improvement in performance shows the bounty of the proposed approach,
which was tested on Kitani’s egocentric activities dataset. This represents a good start-
ing point in optimizing computer vision techniques for egocentric video analysis. Such
optimization must so far be done on the software side, as dedicated hardware (as GPUs)
is yet to be available on wearable devices.

Future research directions include the applications of the presented framework to other
superpixels algorithms. However, some work can still be done on SLIC (which has
already proved to be an extremely powerful and versatile algorithm in many applica-
tions), for instance by measuring the drifting and making the method self-aware and
self-adaptive for what concerns I-frames and noise insertion.
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Chapter 6

Left/Right Identification

Identification is an intuitive but challenging task, needed for many purposes ranging
from activity to gesture recognition. The objective is to identify the left and the right
hand in a manifold of complex scenarios which include the case hands are close enough
to create a single shape that has to be split (occlusion disambiguation). This chapter
investigates the issue, although the explorations is still in its early stage and both the
presented discussion and the results are only preliminary.

6.1 Introduction and related work

The importance of hands in First Person Vision is well validated across the literature and
have been discussed already in this thesis.

In the following, an essential bibliography is provided, comprising works which men-
tion the problem of hand-identification. None of them, however, addresses the matter
explicitly, reducing it to a minor post-processing issue. Recent methods and strategies
to process these First Person Videos are summarized in [22]. In [20] a hierarchical
structure to develop hand-based methods for wearable cameras was proposed and an
extension of this work was presented in chapter 3. [153] shows that discriminating the
active and passive objects makes it possible to improve the recognition rate. In their
approach the active object is the one being manipulated by the user. [74] proposes a vi-
sual background-foreground segmentation based on graphcut. Subsequently [132, 131]
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propose a pixel level hand-segmentation method based on color. Recently the authors in
[251] propose a shape-aware classifier, and [19, 23] shows the importance of separating
the steps of hand-detection and segmentation, since hands are not always framed in the
scene. The pioner work of [134] shows the strong link between the objects, hands and
gaze. In the same line the authors in [36] shows how using the relative position of the
hands is possible to infer the gaze of the user.

The hand-identification problem is extended in [128], proposing a Bayesian method to
identify, using the relative positions, the hands of the user as well as the hands of a third
person in the video. It is worth to mention the robustness of the proposed hand-detector
to the presence of third person hands. However, in the segmentation level, extra effort
must be done to segment only the user hands.

Although the problem of identification is somehow described in the provided papers, it is
always addressed as a segmentation post-processing step and is usually based on naive
heuristic rules. The following investigation tries to fill this gap in the literature with
a more structured and rational approach, analyzing all the possible cases and solving
issues related to hand-to-hand occlusion.

Hands identification is performed straight after the segmentation step, as discussed in
chapter 3. However, the rigid structure proposed in Figure 3-4 show here one of its lim-
its. Not only a post processing step will be needed after segmentation in order to remove
noise, as detailed further on in this chapter; but also segmentation disambiguation is
sometimes needed in case of hand-to-hand occlusion. Under this perspective, segmen-
tation and identification blocks do have definite hierarchical order, but are exchanging
valuable information, as modeled in Figure 3-10, establishing a sort of feedback loop
between two different levels.

We found that in realistic scenarios the proposed approach properly differentiate the left
and the right hand in almost all the frames at low computational cost. Two challenging
situations are: i) The hands are close enough to create a single shape; ii) The appearance
of hands is divided by an external object as a bracelet or a watch, creating several hand-
like shapes.

6.2 Hands-Identity

At this stage we assume that detection has already taken place, and processed frames
are only positive ones, as depicted in Figure 6-1. The specific segmentation algorithm is
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not relevant1: we only suppose that the corresponding block outputs a certain number of
blobs, possibly including some false positive, which are removed in the post-processing
step with the aid of some heuristics (e.g. very small blobs are removed).

L/R 
Occlusion?

Frame k

NO

Segmentation

Postprocessing

Ellipse fitting

Model comparison

Competition

L/R Segmentation

YES

L/R Splitting

L/R 
Occlusion?

Frame k-1

NO

YES

Segmentation

Postprocessing

Ellipse fitting

Model comparison

Competition

L/R Segmentation

L/R Splitting

Figure 6-1: Block diagram of the proposed approach.

6.2.1 Building the L/R model

For what concerns the very first investigation, we employ manually-generated masks
from the GTEA dataset [72], with manual left/right labeling (Figure 6-2), using the
code provided by [132]. This simulates a perfect knowledge of L/R hand locations and
shapes in each frame (occlusions are manually solved.) and allow the construction of two
different ellipses (Figure 6-3). These are constructed with the OpenCV implementation
of the ellipse fitting method described in [77].

1In the results presented in the following, we developed a method derived from [131], which we will not
discuss.
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The two relevant parameters extracted from the ellipses are: i) the distance 𝑥 of the
centroid to the image border. ii) the angle 𝜃 of the major axis with respect to the image
bottom horizontal border.

Figure 6-2: Manually segmented hands

Figure 6-3: Fitting segmentation blobs with ellipses

The observed empirical distribution of the ellipses obtained from the manually generated
masks is shown in figure 6-4 (top). Interestingly there is a small amount of asymmetry
between the left and right distributions, meaning that one of the two hands is used for a
wider variety of movements than the other. Although the problem is interesting, since it
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could allow to personalize the models for right-handed and left-handed users on board
of a (personal) wearable device, we have decided to neglect this fact in the current in-
vestigation.

Empirical Distribution

Proposed Model
Left Hand Right Hand

Left Hand Right Hand

Relative distance to left Border

0°

45°

90°

135°

180°
0 10.50.51

0°

45°

90°

135°

180°
0 10.50.51

0°

45°

90°

135°

180°

Relative distance to right Border

0°

45°

90°

135°

180°
0 10.50.51 0 10.50.51

Relative distance to left Border Relative distance to right Border

Max

Min

Figure 6-4: Empirical (Top) and theoretical (Bottom) hand distribution function given
the distance to relative distance to the sides of the image. For the left(right) the relative
distance to the left(right) side is used.

Based on these observation, we generate a mathematical model, trying to make it as
similar to the observed distribution as possible. This is shown in the bottom part of figure
6-4. For both the angular and spatial dependencies, the shape is inspired by Maxwell
distributions.

For what concerns the 𝑥 parameter (position of the ellipses), the functions are:
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𝑝𝑙(𝑥) =

√︂
2

𝜋

(𝑥 + 𝑑𝑥)2

𝑎3
𝑒
−

(𝑥 + 𝑑𝑥)2

2𝑎2 , (6.1)

𝑝𝑟(𝑥) =

√︂
2

𝜋

(1 − 𝑥 + 𝑑𝑥)2

𝑎3
𝑒
−

(1 − 𝑥 + 𝑑𝑥)2

2𝑎2 . (6.2)

Here 𝑥 is the distance from the border of the image of ellipse’s centroid (normalized
with respect to the frame width); 𝑑𝑥 translates the Maxwell distribution to the side; 𝑎
determines the width of the distribution (empirically set to 𝑎 = 0.22).

The angular part is also described as a Maxwell distribution function, as follows:

𝑝𝑙(𝜃) =

√︂
2

𝜋

(𝜃 + 𝑑𝜃)2

𝑎3
𝑒
−

(𝜃 + 𝑑𝜃)2

2𝑎2 (6.3)

𝑝𝑟(𝜃) =

√︂
2

𝜋

(𝜋 − 𝜃 + 𝑑𝜃)2

𝑎3
𝑒
−

(𝜋 − 𝜃 + 𝑑𝜃)2

2𝑎2 (6.4)

where theta is the angle of the major axis of the ellipse calculated

Eventually the models plotted in Figure 6-4 (bottom) are:

𝑝𝑙(𝑥, 𝜃) = 𝑝𝑙(𝑥)𝑝𝑙(𝜃) (6.5)

𝑝𝑟(𝑥, 𝜃) = 𝑝𝑟(𝑥)𝑝𝑟(𝜃) (6.6)

If the functions 6.5 and 6.6 are normalized they can be interpreted as probability distri-
butions.

6.2.2 Hands occlusions

As already mentioned, one of the main challenges of identification derives from hands
touching or self-occluding. In this case, any segmentation algorithm would output a
single big shape (actually, in some cases hands need not to touch: a single shape is
created by the segmenter if hands are close enough).
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Figure 6-5: Hand-to-hand occlusion: a single blob is created and thus a single ellipse is
generated.

This situation is depicted in Figure 6-5: here a single ellipse would be outputted with
characteristics which would be not compatible with the models discussed above. How
do we detect it? As it can be seen from the work-flow diagram 6-1, the module detecting
occlusions relies on L/R segmentation performed in the previous frame. Pseudocode is
provided in algorithm 6.1.

Algorithm 6.1: How occlusions are detected.
Data: CurrentBigBlob, Previous L/R segmentation
Result: Occlusion: Y/N
if previousLeft ̸= ∅ AND previousRight ̸= ∅ then

totalPrevious = previousLeft ∪ previousRight ;
intersection = CurrentBigBlob ∩ totalPrevious;
if 0.8 * Area(totalPrevious) ≤ Area(intersection) ≤ 1.2 * Area(totalPrevious) then

Occlusion← YES;
else

Occlusion← NO;

else
Occlusion← NO;
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6.2.3 Segmentation disambiguation

Once occlusion have been determined, a module is dedicated to disambiguate the seg-
mentation into left and right hands, namely to split the unified blob. At this stage we rely
on the ability of a superpixel algorithm in adhering to objects’ contours. Again, valuable
information is received from the previous L/R segmentation step, which can provide
hints about the L/R boundary. Superpixels are assigned a L/R id based on the superpo-
sition with the previous frame. The pseudocode for this processing block is outlined in
algorithm 6.2.

Algorithm 6.2: How blobs are split in case of hand-to-hand occlusion.
Data: CurrentBigBlob, Previous L/R segmentation, Previous Superpixel segmentation
Result: Current L/R segmentation
Get Superpixel clustering 𝜎𝑘

𝑖 , 𝑖 = {1 . . . 𝑁} in the current frame 𝑘;
for 𝑖 = 1 : 𝑁 do

if centroid(𝜎𝑘
𝑖 ) ∈ CurrentBigBlob then

if centroid(𝜎𝑘
𝑖 ) ∈ previousLeft ∩ then

Id(𝜎𝑘
𝑖 ) = 𝐿;

else if centroid(𝜎𝑘
𝑖 ) ∈ previousRight then

Id(𝜎𝑘
𝑖 ) = 𝑅;

else
Id(𝜎𝑘

𝑖 ) = Id(𝜎𝑘−1
𝑐𝑙𝑜𝑠𝑒𝑠𝑡) ; /* id of the closest sp in the

previous frame */

6.3 Results

6.3.1 Perfect segmentation

As a first result, we want to show that, using the orientation and position of the seg-
mented blobs, it is possible to accurately decide if the hand-like shapes in the frame
are left or right hands. With this in mind we initially evaluate the decision functions
presented in section 6.2.1 assuming the availability of a perfect segmentation and no
occlusion ambiguity, i.e. using again manually labeled masks.

The two sections of Table 6.1 show results based on two different evaluation schemes.
The confusion matrix on the left side refers to the id assignment based only on the best
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Table 6.1: Left and right hand identification at contour level

No-competition With competition

Left Right Left Right

Left 0.994 0.006 0.997 0.003
Right 0.012 0.988 0.000 1.000

fitting model, with no constraints. However, it is quite obvious that if two hands are
present, they cannot be assigned the same id. The two blobs thus compete for both the
left and the right model. Using this scheme, the classification rates are increased and
even reach 100 % fro the right hand. This appears at the bottom of the block diagram of
Figure 6-1.

6.3.2 Disambiguating occlusions

To evaluate the occlusion detection block of Figure 6-1 we manually select the masks
showing occlusion evidence. Those masks do not correspond to the video interval with
hand occlusions, but are a good approximation to understand if the decisions rules pre-
sented in the last section are properly identifying difficult cases. In total the 5 testing
videos contains 51 masks with evident hand occlusion. In total our decisions rules were
able to identify 98% of them.

Actually, since in this case we employ an actual segmentation algorithm, we have a lot
of false positive occlusions, that is hands are not touching, but are close enough to make
the segmenter output a single shape. This is not a problem, since we simply split them
as if they were occluded, losing only a little efficiency. Since the segmenter needs a
training phase [131], all the results presented from now on will refer to only four videos
of the GTEA dataset [72]: the fifth video, namely the "Coffee" sequence, is always the
one used for training.

Table 6.2 presents the segmentation results only in the frames where occlusion is de-
tected (the task is addressed as a three-class classification problem: left hand, right hand,
background, thus results are given the shape of a confusion matrix describing pixels’ as-
signments to classes).

Table 6.3 compares instead the case splitting is performed with the case it is not. The two
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Table 6.2: Evaluation of hand segmentation when split is required

Background Left Right

Background 0.984 0.007 0.009
Left 0.058 0.934 0.009

Right 0.080 0.006 0.914

confusion matrices are of course identical in the Background part, since the segmenter
is the same in the two experiments. Segmentation accuracy gains almost ten percent-
age points when L/R disambiguation is performed. Eventually, table 6.4 provides the
detailed results for each testing video.

Table 6.3: Confusion matrices with and without occlusion disambiguation.

Without split With split

Background Left Right Background Left Right

Background 0.992 0.004 0.004 0.992 0.004 0.004
Left 0.073 0.821 0.106 0.073 0.923 0.004

Right 0.096 0.066 0.838 0.096 0.001 0.903

6.4 Conclusions and future research

Unlike most of the results presented in the other chapters of this thesis, the ones pro-
vided above have not been published yet, still representing the starting point for a more
exahustive discussion. However we have proved the benefit of hands occlusion disam-
biguation within the L/R identification problem. Results were presented in the shape of
segmentation confusion matrices, although related algorithm was not reviewed in detail.
As mentioned, the segmentation algorithm is not important itself, although a superpixel-
based method would required less additional computation in the Occlusion Detection
and L/R Splitting blocks.

Future developments of this chapter include F1 scores for evaluating segmentation and
evaluation of the performance jointly with the detection block.
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Chapter 7

Hand Pose

Hand pose recognition plays a fundamental role in tasks such as gesture and activity
recognition, which in turn represent the base for developing human-machine interfaces
or augmented reality applications. In this chapter we propose a graph-based represen-
tation of hands seen from the point of view of the user, obtained through the shape-fitting
capability of a particular neural network. Spectral analysis of the graph Laplacian al-
lows to arrange eigenvalues in vectors of features, which prove to be discriminative in
classifying the hand poses considered.1

7.1 Pose and gesture recognition

Hand-related methods have quickly gained importance in FPV [21] since the spreading
of wearable technology. Hands represent in fact one of the main interaction media with
the surrounding environment [70] and thus also one of the most natural way to commu-
nicate with the device. Besides, most of people’s activity do involve hands, which often
perform gestures in the field of view of the users and of the body worn cameras [23].
Recognizing user’s activity is believed to be essential in providing an augmented reality
experience through the display of smart-glasses.

1The results presented in this chapter have been submitted for publication to ICIP 2016 (23rd IEEE Inter-
national Conference on Image Processing).
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The problem of automatically recognizing hand poses has only recently been investi-
gated in FPV by Kitani et al. [38]. The same authors propose a method to understand
the functionality of human hands by analysing grasps poses using state of the art com-
puter vision techniques [101]. In addition, their research exploits object recognition and
hands-objects interaction analysis to deeper infer on users’ activities [103]. Although
the problem has already been addressed from third-person viewpoint, to the best of our
knowledge the latter is the first attempt to analyse poses from the first-person perspec-
tive, even though only limited to grasp poses.

(a) Handwriting (b) Typing (c) Holding a cup

(d) Abuction (A) (e) Medium Wrap (MW) (f) Writing Tripod (WT)

Figure 7-1: (a,b,c) Typical poses corresponding to the three different activities con-
sidered in our preliminary results (E1). (d,e,f) Three grasps of the UTC dataset [101]
(masks are provided), corresponding to three different taxonomic categories [34] used
in E2.

In this work, we propose a hand pose recognition method which exploits the property
of graph-signals to encode shape information of objects. Representing objects with a
graph is an idea which has become established with the growing interest in graph signal
processing in the last few years. Such a representation is for instance used in visual
tracking, where tracked features are encoded in a graph, whose tracking is accomplished
by exploiting graph matching techniques [39] from one frame to the following. It is
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indeed thanks to the growing interest in graph signal processing that techniques such as
graph spectral analysis have been recently re-discovered. Just to mention, [143] uses
graph spectral analysis for identifying properties of dynamically allocated data struc-
tures, while [8] even propose an extension the Nyquist-Shannon theory of sampling to
signals defined on arbitrary graphs.

It is common understanding that gesture recognition methods should be based on a first
segmentation step in order to separate the hand region from the background [131]. In the
field of FPV both pixel-by-pixel [160] [132] and superpixel-based methods [200] [161]
have been exploited to this end. In this chapter we employ a pixel-by-pixel approach,
since single pixel will be used as inputs of a Neural Network in order to construct a
graph representation of hands, as it will be detailed in section 7.2.2.

The remaining of this chapter is organized as follows: section 7.2 presents the proposed
approach for hand pose recognition: a subsection is dedicated to each step of the pro-
posed procedure; the experimental set-up and our findings are presented in section 7.3,
while conclusions eventually are drawn in section 7.4.

7.2 Pose recognition framework

The proposed method follows the flow depicted in Figure 7-2. After an image is ac-
quired, a colour segmentation step outputs a binary image of the segmented hand. Such
image is given as input to an artificial neural network, which outputs a graph whose
topology mirrors the shape of the hands. The graph Laplacian is then extracted and di-
agonalized, in order to compute its eigenvalues. A vector of ordered eigenvalues is then
produced and given as input to a SVM classifiers. In the following we will go into the
details of each processing step.

7.2.1 Colour segmentation

Input: Colour frame
Output: Binary image with hand segmentation

A manifold of segmentation methods have been proposed in computer vision. The aim
here is to separate the foreground image represented by the hand region from the back-
ground. Being skin complexion extremely discriminative, we rely here on colour-based
segmentation. Besides, it has been argued in [160] that being wearable devices personal
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Figure 7-2: Work-flow diagram of the proposed method.

(precisely as smart-phones are), they can be trained specifically on the skin shade of the
user.

Here we exploit a segmentation rule based on thresholds as proposed in [216], but we
remark that the choice of the segmentation method is not the key aspect. For example,
many approaches put great stress on smooth contours, which are not needed here. The
aim is simply to extract as many pixels as possible from the hand region, but even a
poor segmenter can allow in the next step to have a good hand representation, namely to
construct a graph which is representative of the hand pose. Any method with low false
positives rates could work as good. The reader can refer to chapter 5 for a more detailed
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(a) YCbCr image (b) binary mask

Figure 7-3: Segmentation step

discussion on segmentation methods and on chapter 2 for an extensive state-of-the art
review.

The skin segmentation rules are devised in the 𝑌 𝐶𝑏𝐶𝑟 colour space as suggested by
both [216] and [160] and can be summarized as follows:{︃

𝐶𝑏(𝑖, 𝑗) ∈ 𝑅𝐶𝑏) ∩ (𝐶𝑟(𝑖, 𝑗) ∈ 𝑅𝐶𝑟) ⇒ (𝑖, 𝑗) ∈ ℎ𝑎𝑛𝑑,

𝐷1 ∪𝐷2 ∪𝐷3 ∪𝐷4 < 𝑇 ⇒ (𝑖, 𝑗) ∈ ℎ𝑎𝑛𝑑
(7.1)

where 𝑇 is a threshold and 𝐷1, 𝐷2 are the euclidean distances between 𝐶𝑏(𝑖, 𝑗) and
the upper and lower bounds of the range 𝑅𝐶𝑏 and 𝐷3, 𝐷4 are the equivalent for the 𝐶𝑟

channel.

A typical output of this block is the binary image shown in Figure 7-3(b)

7.2.2 Graph construction

Input: Binary mask image
Output: Graph representing the hand shape

A graph is a structure composed by nodes connected by edges. We here consider non-
directed graphs and take for granted that the reader has some basic knowledge about
them.

As already mentioned, graphs has recently been employed for representing visual ob-
jects to be tracked [39]. The main idea is there that objects can be represented as an
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ensemble of sub-parts (nodes), one related to the other (edges). We here propose that
a geometrical shape can be encoded in a graph and such a representation has some dis-
criminative power for what concerns the classification of hand pose. This block takes
care of the constructions of such graph, exploiting the fitting capabilities of a particu-
lar neural network, namely a modified version of the Instantaneous Topological Map
(ITM)2 [105], depicted in Algorithm 7.1. Note how the edge adaptation step is modified
with respect to Algorithm 5.1 to cope with concave shapes.

The network is fed with the pixels from the hand mask, which fire neurons making them
adapt to the stimuli. Links are modified accordingly. The main difference from the
standard ITM lies in the fact that the map is able to fit concave shapes, since links which
do cross white regions are removed. Such links may appear when the parameter 𝑟𝑚𝑎𝑥

is larger than a concavity, as it can be noticed from Figure 7-4(c). However, a very low
𝑟𝑚𝑎𝑥 results in a very large number of nodes as in the case of 7-4(a). This is not desirable
since it will produce a huge Laplacian matrix to be processed, as discussed in the next
subsection. The value is here fixed to 𝑟𝑚𝑎𝑥 = 10 in order to have a number of nodes
in the range 50 − 100. The number of node can of course change among the different
images considered, but it is of the same order of magnitude. For what concern the tuning
of the other parameter 𝜀, this is tuned heuristically and its value is fixed to 𝜀 = 0.1. For
a detailed discussion on the tuning of the two parameters the reader can refer to [162].

In terms of computational complexity, the Matching step scales with the number of
neurons, which can be implicitly controlled by the parameter 𝑟𝑚𝑎𝑥. Edge adaptation
scales with the average number of neighbours, which is related to the dimensionality of
the input data (two in this case). All other steps are independent of the number of neurons
involved allowing the algorithm to execute reasonably fast even for large networks.

7.2.3 Graph spectral analysis

Input: Graph
Output: Vector of features

It is very common to deal with a graph in one of its matrix representation. The one
employed here is the normalized version of the Laplacian, given by

𝐿 = 𝐼 −𝐷− 1
2𝐴𝐷− 1

2 , (7.2)
2Please note that the modification is different from the one introduced in algorithm 5.1 of chapter 5.
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Algorithm 7.1: Modified ITM to avoid outside edges. The network is initialized
with 2 seeds in the input space, connected by an edge.

Data: input vector x = (𝑖, 𝑗); set of 𝑁 nodes with weights wi = (𝑥𝑖, 𝑦𝑖)
Parameters: shift 𝜀; resolution 𝑟𝑚𝑎𝑥;
Result: Network adapted to the new pixel x
1. Matching: find nearest neighbour 𝑛 and second nearest 𝑠 ;
Initialize 𝑑𝑛 = 𝑀𝐴𝑋_𝑉 𝐴𝐿 and 𝑑𝑠 = 𝑀𝐴𝑋_𝑉 𝐴𝐿− 1
for 𝑖 = 1 : 𝑁 do

𝑑 = 𝑑(x,wi);
if 𝑑 < 𝑑𝑛 then

𝑑𝑠 = 𝑑𝑛;
𝑑𝑛 = 𝑑;
𝑠 = 𝑛;
𝑛 = 𝑖;

else if 𝑑 < 𝑑𝑠 then
𝑑𝑠 = 𝑑;
𝑠 = 𝑖;

2. Weight adaptation:
wn = wn + 𝜀(x−wn) ;
3. Edge adaptation:
if 𝑛 = 𝑠 then

If not outsider link 𝑛↔ 𝑠;

𝑁(𝑛): set of connected neighbours of 𝑛
for ∀𝑗 ∈ 𝑁(𝑛) do

𝑆(wn,wj): Thales sphere through wn and wi;
if 𝑤𝑠 ∈ 𝑆(𝑤𝑛, 𝑤𝑖) then

𝑛 = 𝑗;

4. Node adaptation:
if 𝑑(x,wi) > 𝑟𝑚𝑎𝑥 then

add new node 𝑚 with 𝑤𝑚 = 𝑥;
𝑛↔ 𝑚;

if 𝑑 = 𝑑(wn,ws) <
1
2
𝑟𝑚𝑎𝑥 then

remove node 𝑠 ;

where 𝐷 is the degree matrix (number of connection of each node on the diagonal)
and 𝐴 is the adjacency matrix (1 where a link exist, 0 elsewhere). Theory shows that
the eigenvalues 𝜆𝑖 of this matrix (which are real, being it symmetric) have interesting
property and if ordered from the smallest can provide information about the structure
of the graph. They lie in the range [0 : 2] and 𝜆0 = 0 with a multiplicity equal to
the number of connected components of the graph; 𝜆1 carries some information about
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(a) 𝑟𝑚𝑎𝑥 ≪ 1 (b) 𝑟𝑚𝑎𝑥 ≫ 1

(c) optimal value of 𝑟𝑚𝑎𝑥 ≈ 10 (d) external links removed

Figure 7-4: Graph construction trough modified ITM algorithm (typing pose)

the general average connectivity of graph. Other eigenvalues cannot be given a precise
meaning, but for sure they encode valuable information about the graph structure. This
is why, starting from 𝜆1, we consider a vector of Laplacian eigenvalues as features to
discriminate among hands poses. In Section 7.3 we will verify that just the smallest 5
eigenvalues can be enough for accomplishing this task in two cases.

Diagonalization of matrices is a 𝑂(𝑛3)-complex problem, this is the reason why the
number of nodes must be contained within a reasonable amount through the tuning of
the 𝑟𝑚𝑎𝑥 parameter.

7.2.4 Classification

Input: Vector of features
Output: Pose id
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As a first experiment, we compare pairs of poses, by training different binary SVMs.
This is a first step to verify whether the proposed feature representation is discriminative
enough for the problem of hand pose recognition. A more applicable method will need
a structured multi-class approach.

7.3 Major findings

7.3.1 Preliminary investigation (E1)

Three different gestures with three typical poses are considered for a preliminary inves-
tigation. Samples of the employed images are shown in Figure 7-1. For simplicity we
will refer to them as to pose 1, 2 and 3 respectively. A set of 40 heterogeneous pictures
was collected for each pose. After extracting graph eigenvalues from each image, as il-
lustrated in the previous section, poses were compared pair by pair, in a k-fold validation
framework (more precisely we adopted the leave-one-out scheme).

Table 7.1: Pairwise confusion of the classification accuracy with 10 eigenvalues (E1).

(a) Pose 1 vs Pose 2

SVM
Pose 1 Pose 2

V
al

ue Pose 1 0.85 0.15
Pose 2 0.05 0.95

(b) Pose 1 vs Pose 3

SVM
Pose 1 Pose 3

V
al

ue Pose 1 0.80 0.20
Pose 3 0.00 1.00

(c) Pose 2 vs Pose 3

SVM
Pose 2 Pose 3

V
al

ue Pose 2 0.95 0.05
Pose 3 0.15 0.85

Classification accuracies for the three experiments are reported in Figure 7-5(a), for
different number of eigenvalues considered. Using only the first non-zero eigenvalue
yields of course very poor results, since the number of connections within the graphs are
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comparable. By adding more and more information, in the form of new eigenvalues in
the vector, accuracy increases till it stabilizes to the best performance.
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Figure 7-5: The effect of the number of eigenvalues on the accuracy of the classifiers in
the two experiments.

It can be noticed how in the case of Gesture 1 vs 3 more eigenvalues are needed for the
classifier to reach the maximum performance. This is easily explained by the fact that
the two poses are more similar, being the hand closed in a grasp in both cases.

126



Tables 7.1(a)(b)(c) show the confusion matrices for the three experiments. The most
unbalanced case is the one of Gesture 1 vs 3.
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Figure 7-6: Execution time

For what concerns the complexity of the method, the most time consuming step is graph
construction, as already discussed in subsection 7.2.2: it strongly depends on the number
of nodes, to be controlled by 𝑟𝑚𝑎𝑥. Such a number also influences the complexity of the
subsequent matrix diagonalization. Figure 7-6 show the execution time of the algorithm
for different number of nodes. By limiting the average quantity of nodes generated by
the graph construction step one could potentially further reduce complexity. Please note
the time refers to non-optimized MATLAB code.

7.3.2 UTC dataset (E2)

Given the encouraging results of the preliminary investigation, we proceeded by validat-
ing our findings on a more structured public dataset [101]. For each of the 3 categories
proposed in [34] we chose one kind of grasp (Fig. 7-1). Since the UTC dataset provides
masks, we here skip the segmentation step and jump to the graph formation directly.
A one-versus-all SVM is trained, again by taking an increasing number of eigenvalues.
The accuracy is plotted in Fig. 7-5(b), while four confusion matrices are shown in Table
7.2.
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Table 7.2: Confusion matrices of the classification accuracy (E2).

(a) 1 eigenvalue

SVM
A MW WT

V
al

ue

A 0.00 0.39 0.61
MW 0.00 0.95 0.05
WT 0.00 0.19 0.81

(b) 5 eigenvalues

SVM
A MW WT

V
al

ue

A 0.54 0.34 0.12
MW 0.03 0.97 0.00
WT 0.12 0.10 0.78

(c) 9 eigenvalues

SVM
A MW WT

V
al

ue

A 0.69 0.20 0.11
MW 0.03 0.96 0.00
WT 0.13 0.10 0.77

(d) 13 eigenvalues

SVM
A MW WT

V
al

ue
A 0.69 0.20 0.11

MW 0.03 0.96 0.00
WT 0.13 0.10 0.77

7.4 Conclusion

In this chapter we have shown how a graph representation of hand shapes can be ex-
ploited in a pose recognition problem. Vectors of graph Laplacian eigenvalues proved
to be robust features in discriminating pairs of poses. In the case of similar poses, more
information is need for reaching an optimal classification accuracy.

Results are encouraging although far from real time, which can be approached by opti-
mizing our Matlab code and by migrating to better performing programming language.

Still, a more applicable method will need a structured multi-class approach [100] with
a more extended dataset (more gestures). Another interesting future research line may
include an analysis of the robustness of the graph eigenvalue representation against seg-
mentation noise.
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Chapter 8

Conclusion and Future Work

This thesis have investigated hand-related methods in First Person Vision, as a way for
providing new functionalities to wearable devices. Inspired by a detailed state-of-the-
art investigation, a unified hierarchical structure was proposed, that optimally organizes
processing levels to reduce the computational cost of the system. Such structure was
also extended borrowing concept from the theory of Cognitive Dynamic Systems. Most
of the levels sketched in the global framework were also deeply investigated. For the
proposed algorithms specific conclusions have been drawn in the dedicated chapters.

8.1 Summary of contribution and major findings

Main contribution of this thesis are summarized as follows

∙ A detailed and comprehensive review of First Person Vision and its evolution was
presented, together with a categorization of methods and a discussion of chal-
lenges and opportunity within the field.

∙ A global framework for hand-related egocentric-vision methods was introduced.
A hierarchical structure was proposed for the design of a Fist Person Vision system
and some hints were given on how to provide it with cognitive functionalities.

∙ Four levels of the proposed framework were fully investigated at algorithmic level,
namely:
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– Hand detection level: a classifier for detecting hands’ presence in frames was
developed. Temporal smoothing of the underlying decision process allows
to increase performances of the algorithm.

– Hand segmentation level: a naive investigation on color as a discriminative
feature for segmentation was carried on. A superpixel algorithm was devel-
oped (GSP), with the purpose of segmenting hands in each frame; a general
optimization scheme was eventually design for exploiting temporal correla-
tion of frames in videos.

– Hand identification level: an identification algorithm based on a position-
angle model was presented, which is able to distinguish left from right hand
with high precision.

– Hand pose recognition level: a graph representation of hands was investi-
gated and proved to be effective in providing discriminative features in a
multiclass pose classification problem.

8.2 Future developments

The work presented in this thesis has no claim of being comprehensive and in fact opens
the way to several interesting future research topics. Most of them, pertaining to the
specific algorithms, have been already highlighted in the dedicated chapters.

An interesting general line of research concerns the implementation of the Control side
of the Cognitive framework proposed, which was only superficially treated in this the-
sis. As already mentioned, such an implementation is strictly algorithmic dependent,
since both measuring the performances of the Perceptor units and selecting appropriate
cognitive action are very specific issues.

In addition, many of the levels of inference here proposed (tracking, interaction analysis
and higher levels) have not been investigated at all. Any possible future investigation
at higher level should be however more application-oriented than the one carried on in
this work, which, sticking to the lower levels of the hierarchy, could disregard the final
objective.
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