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Sommario

I sistemi wireless per la localizzazione sono essenziali per numerose applicazioni emer-

genti che si basano sul concetto di context-awareness, specialmente nei settori civile,

della logistica e della sicurezza. Ottenere una stima accurata della posizione di

oggetti target in ambienti indoor, a cui molte di tali applicazioni si rivolgono, è tut-

tora ostico ed è oggetto di una attività di ricerca fervente a livello mondiale. Le

prestazioni di tali sistemi derivano dalla qualità di misure di distanza (ranging) ot-

tenute processando segnali wireless scambiati tra nodi che compongono il sistema di

localizzazione. Tali stime di distanza servono da osservazioni per l’inferenza della po-

sizione dei target e la loro qualità dipende dalle proprietà intrinseche della rete e dalle

tecniche di processamento del segnale. Pertanto, il progetto di tali sistemi non può

prescindere da un accurato modello statistico per l’informazione sulla distanza e da

efficienti algoritmi di ranging, localizzazione e tracciamento. Gli obiettivi principali

di questa tesi sono: (i) la derivazione di modelli statistici e (ii) il design di algoritmi

per diversi tipi di sistemi wireless per la localizzazione, con particolare riguardo verso

i sistemi passivi e semi-passivi (sistemi radar attivi, sistemi radar passivi, sistemi di

identificazione a radio frequenza). A tal fine, sono stati derivati modelli statistici per

l’informazione di distanza, proposti algoritmi di tipo soft-decision e hard-decision

a bassa complessità ed analizzati diversi sistemi di localizzazione a banda larga e

ultra-larga. L’attività di ricerca è stata condotta anche nell’ambito di diversi pro-

getti, in collaborazione con altre Università ed aziende nazionali ed internazionali,

e nell’ambito di un periodo di ricerca di durata annuale presso il Massachusetts

Institute of Technology, Cambridge, MA, USA. L’analisi di prestazione dei sistemi

descritti, dei modelli derivati e degli algoritmi proposti è stata validata considerando

diversi case study in scenari realistici e utilizzando anche risultati ottenuti nell’ambito

dei suddetti progetti.
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Abstract

Wireless localization systems are essential for emerging applications that rely on

context-awareness, especially in civil, logistic, and security sectors. Accurate local-

ization in indoor environments is still a challenge and triggers a fervent research

activity worldwide. The performance of such systems relies on the quality of range

measurements gathered by processing wireless signals within the sensors composing

the localization system. Such range estimates serve as observations for the target

position inference. The quality of range estimates depends on the network intrinsic

properties and signal processing techniques. Therefore, the system design and anal-

ysis call for the statistical modeling of range information and the algorithm design

for ranging, localization and tracking. The main objectives of this thesis are: (i) the

derivation of statistical models and (ii) the design of algorithms for different wire-

less localization systems, with particular regard to passive and semi-passive systems

(i.e., active radar systems, passive radar systems, and radio frequency identification

systems). Statistical models for the range information are derived, low-complexity

algorithms with soft-decision and hard-decision are proposed, and several wideband

localization systems have been analyzed. The research activity has been conducted

also within the framework of different projects in collaboration with companies and

other universities, and within a one-year-long research period at Massachusetts In-

stitute of Technology, Cambridge, MA, USA. The analysis of system performance,

the derived models, and the proposed algorithms are validated considering differ-

ent case studies in realistic scenarios and also using the results obtained under the

aforementioned projects.
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Chapter 1

Introduction

The evolution of communication and information technologies calls for systems that

are increasingly distributed in an operating environment. The fifth generation of

wireless systems envisages a large number of applications where sensors embedded

in physical objects will be networked with people and other devices [1]. For example,

the integration of Global Positioning System (GPS) and inertial sensors into cellular

phones marked the beginning of a new era of ubiquitous context-awareness. Internet

of things, ubiquitous computing, and autonomous logistic are emerging paradigms

that follow this trend. Location inference is a prerequisite for context-awareness and

enables a number of new important applications.

Localization and tracking are performed by wireless localization systems that

infer the location of objects, devices, and persons—depending on the application—

from the processing of wireless signals. The capability of wireless localization sys-

tems to operate in indoor and harsh propagation environments is still a challenge

and triggers a fervent research activity worldwide. In fact, sub-meter localization

accuracy in such conditions is a key enabler for a diverse set of applications: secu-

rity tracking (the detection and localization of unauthorized persons in high-security

areas), medical services (the monitoring of patients), rescue operations (the search

for disaster victims in inaccessible areas), logistic (the tracking of goods in ware-

houses and management chains), and a large set of emerging wireless sensor network

(WSN) applications. Nevertheless, the conventional techniques fail to provide satis-

factory performance in many scenarios: GPS-based tracking is inaccurate in harsh

environments (e.g., indoor and urban canyons) and inertial tracking is inaccurate in

long-term operations due to velocity drift.

Depending on the application, the processing of wireless signals at different re-
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2 Chapter 1. Introduction

ceivers allows to infer the position of transmitters, receivers, or others (e.g., devices,

objects, or persons). A first classification of localization system can be done by dis-

tinguishing between active and passive targets, as well as between active and passive

sources.

Active and Passive Target The wireless signals can be directly conveyed be-

tween objects (in unknown positions) and anchors (in known positions) or emitted

by anchors and backscattered by objects the former is referred to as localization of

active objects (tags), while the latter is referred to as localization of passive objects

(targets).

A particular case of semi-passive target refers to radio frequency identification

(RFID) based on backscatter modulation, which enables both localization and iden-

tification of tagged objects. In such a case, the reader is the only active device,

thus with capability of transmitting, receiving, and processing the signals. Tags

act as passive reflectors only; initially, they are in sleeping mode to save energy,

then a wake-up signal is used for waking up all the tags present in the environment

monitored by the reader.

Active and Passive Source The source that emits the signal can be active or

passive depending on whether it belongs to the localization system or not, respec-

tively. For example, the processing at different receivers of signals transmitted by

non-collaborative sources, namely transmitters of opportunity, may be exploited to

detect and localize the transmitter itself or a mobile receiver (e.g., passive network

localization) or passive scatterers in the monitored environment (e.g., passive radar).

Localization systems with passive sources exploit transmitters of opportunity

for stealth and low-cost navigation and tracking [2]. In general, the networked

receiving-only nodes receive the signals of opportunity (SOO) directly from the

non-collaborative sources or backscattered by the target. Several signal process-

ing techniques are proposed in the literature to estimate the position of the target

based on such received waveforms. For example, time difference-of-arrival (TDOA),

frequency difference-of-arrival (FDOA) and angle-of-arrival (AOA) metrics are often

adopted in this context since no synchronization is guaranteed between receivers and

transmitters [3, 4].

Objectives and Dissemination

The main purposes of this thesis are the statistical modeling and algorithm develop-

ment for design and analysis of different wireless localization systems, with particular
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regard to semi-passive and passive systems.

The key contributions of the thesis are:

• derivation of a range information model for design and analysis of wideband

ranging systems based on energy detection;

• development of low-complexity ranging algorithms with optimal energy detec-

tors (EDs) for soft-decision and hard-decision localization;

• introduction of blind techniques for the selection of representative observations

in sensor radars;

• proposal of a low-complexity scheme for localization in RFID systems based on

backscatter modulation and design of Bayesian framework for estimating the

order of arrival (OOA) of tagged objects;

• development of a methodology for design and analysis of sensor radars (SRs)

by jointly considering (i) network setting, (ii) propagation environment, (iii)

waveform processing, (iv) observation selection, and (v) localization algorithm;

• proposal of a Bayesian framework for the passive tracking and velocity estima-

tion of moving targets based on LTE signals of opportunity;

The remainder of the thesis is organized as in the following.

Chapter 2 describes range-based location inference, with particular regard to

indoor applications. The signal processing for localization and tracking is discussed

and serves for a better understanding of the research activity.

Chapter 3 introduces a tractable model for the range information as a function of

wireless environment, signal features, and energy detection techniques. Such a model

serves as a cornerstone for the design and analysis of wideband ranging systems.

Based on the proposed model, practical soft-decision and hard-decision algorithms

are developed. A case study for ranging and localization systems operating in a

wireless environment is presented. Sample-level simulations validate the theoretical

results.

Chapter 4 presents blind techniques for the selection of representative observa-

tions gathered by SRs operating in harsh environments. A methodology for the

design and analysis of SRs is developed taking into account the aforementioned

impairments and observation selection techniques. Results are obtained for non-

coherent ultra-wideband SRs in a typical indoor environment (with obstructions,
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multipath, and clutter) to enable a clear understanding of how observation selection

improves the localization accuracy.

Chapter 5 analyzes SRs accounting for waveform processing, tracking algorithm,

and resource allocation among different task for inferring the position of moving

targets. Performance of monostatic and multistatic ultra-wideband SRs with dif-

ferent settings is evaluated in a case study for indoor environments with obstacles,

clutter, and multipath. Furthermore, a passive radar system is presented, which

exploits long term evolution (LTE) base stations to detect and track moving targets

in a monitored environment. Such a system is analyzed based on a Bayesian frame-

work for detection of moving targets and estimation of their position and velocity.

A case study is presented accounting for the LTE extended pedestrian model with

various settings in terms of network configuration, wireless propagation, and signal

processing.

Chapter 6 analyzes the detection of multiple tags employing ultra-wideband

(UWB) backscatter modulation and proposes detection schemes that are robust to

nonideal conditions. A case study is presented to evaluate the performance of the pro-

posed technique for the detection of multiple tags based on impulsive backscattered

signals. Furthermore, the application of such a system for high-accuracy order-of-

arrival estimation of goods on conveyor belts is introduced. A tracking technique

based on particle filtering is used for order-of-arrival estimation. Results for a case

of study show accuracy of the proposed system for various settings.

The results presented in this thesis have been published in the proceedings of

international conferences and journals indicated in the author’s publication list. Sev-

eral results have been obtained during a one-year-long research period at the Labo-

ratory for Information and Decision Systems (LIDS) of the Massachusetts Institute

of Technology, Cambridge, MA, USA. Furthermore, part of the research activity has

been conducted within two research projects, namely SELECT (Smart and Efficient

Location, idEntification and Cooperation Techniques) and GRETA (Green Tags).

The scopes of the aforementioned projects is described in the following.

SELECT is an European project1, whose main objectives are: (a) to develop

new-generation UWB based, passive, low-cost tag that is compatible with UHF RFID

standards; (b) to design an UWB Real Time Location System based on such tags

offering up to 15 meters of operational range, with sub-meter location accuracy.

The project requirements in terms of ranging accuracy (12 cm of ranging error at a

1www.selectwireless.eu



5

distance of 7.35 meters within 75% confidence) dictated the choice on technologies

that have to be used to achieve these goals. Considering the required accuracy, it is

necessary to use UWB-IR technology, since it is the only technology that offers the

necessary precision level. Moreover, in order to satisfy the low-cost and low power

consumption requirements, the tag cannot be equipped with a UWB transmitter, as

done in current generation systems, therefore a backscattering modulation approach

is adopted. For the sake of fully satisfying the visibility requirement, the tag has

been improved with standard RFID UHF capabilities, so that the objects can be

tagged with a single SELECT tag in order to be located and tracked when they are

inside a SELECT-based facility and to be identified in a conventional UHF RFID

system.

GRETA is an Italian project2, whose main objective is to realize a demonstrator

of a wireless ecological system for identification, tracking, and monitoring of mobile

subjects adopting zero-power ultra-wide band (UWB) communication techniques,

energy harvesting solutions and eco-compatible materials. First of all, the identifica-

tion of reference applications, requirements and scenarios has lead to designate three

possible field of interests: (i) eHealth, for biomedical and hospital scenarios; (ii) ICT

for food, for the production and commercial distribution chain; and (iii) Logistic.

Two passive tag architectures (UWB-UHF stand alone tags, UWB as an add on

of UHF Gen. 2 Standard tags and active reflector tags) based on UWB backscatter

communication have been considered thanks to their extremely low energy consump-

tion and the possibility to adopt energy harvesting techniques via UHF RF signals.

In fact the energy necessary for communication is harvested from the interrogation

signal, and no radio-frequency (RF) circuits such as amplifiers, oscillators, convert-

ers are required in the tag. Thus the main cause of energy consumption is the RF

switch and the relative digital control logic, whereas the link budget is bounded only

by the interrogator device power constraints. Both the selected architectures present

interesting aspects: the high level of innovation for the former and the compatibility

with previous standard for the latter. For these reasons both will be investigated

by means of a modular approach. The two selected architectures have then been

investigated from a communication and technological point-of-view.

2www.greentags.eu
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Chapter 2

Range-based Localization and

Tracking

Wireless localization systems estimate the position of objects based on prior knowl-

edge and on observations (measurements) gathered by a network of sensors deployed

in the environment. Figure 2.1 shows an example of network where a number of

nodes in known positions (anchors) are employed to estimate the position of a node

in unknown position (target or agent). The estimation of target’s position is per-

formed by processing the received signal at the different receiving nodes. If the

target is dynamic and its trajectory is estimated (usually together with its speed),

the system is referred to as tracking system.

pn
p

pn+1

p|S|

p1

pn−1

Figure 2.1: Example of a wireless localization system with the target at p and |S|

nodes at p1,p2, ...,p|S|.
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8 Chapter 2. Range-based Localization and Tracking

The localization and tracking processes typically consist of two phases: (i) a sens-

ing phase, during which nodes make measurements; and (ii) a location inference

phase, during which target position is inferred using an algorithm that incorpo-

rates both prior knowledge and measurements. In this thesis, we consider also an

observation selection phase, which is an intermediate phase where a subset of

observations is selected and serves as input for the location inference phase.

2.1 Sensing Phase

Localization techniques can be classified based on measurements between nodes such

as range-based, angle-based, and proximity-based. For instance, the position esti-

mate can use an inertial measurement unit (IMU) and a range measurement unit

(RMU). Localization accuracy strongly depends on the quality of the measurements,

which are affected by impairments such as network topology, multipath propagation,

environmental conditions, interference, noise, and clock drift.

Range-based systems (i.e., based on distance estimates) are more suitable for

high-definition localization accuracy. In range-based localization, sensors provide

range measurements whose reliability depends on the intrinsic properties of the net-

work, such as the sensor positions and wireless medium [5].

Providing accurate ranging in harsh environments (such as indoors) is challeng-

ing primarily due to multipath, line-of-sight (LOS) blockage, and excess propagation

delays through materials. In this context, time-of-arrival (TOA) estimation of wide-

band and UWB signals represent an endorsed solution thanks to the robustness

to dense propagation environment and interference [6, 7]. In fact, wideband and

UWB radios have a relative bandwidth larger than 20% or an absolute bandwidth

larger than 500MHz and they offer benefits for both the communication and localiza-

tion [8–10]. The bandwidth improves reliability and capability of signals to penetrate

obstacles. Furthermore, the absolute bandwidth allows the design of high-resolution

radars with higher accuracy of distance estimate with respect to more conventional

techniques. UWB sensor networks have several application since they combine a

good capacity of communication, low power consumption, and low costs enabling

detection and localization for environmental monitoring [11]. UWB signals provide

fine delay resolution, enabling precise TOA measurements for range estimation be-

tween two nodes.

However, the accuracy and reliability of range-based localization techniques typi-
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cally degrade in cluttered environments, where multipath, LOS blockage, and excess

propagation delays through materials lead to positively-biased range measurements.

A method to mitigate such effects is to identify non-line-of-sight (NLOS) situa-

tions in a first phase, and consequently adapting localization algorithms in a sec-

ond phase [12]. NLOS identification techniques are usually based on either distance

estimates or characteristics of received waveforms such as delay spread, kurtosis,

maximum amplitude (see in [13, 14] techniques and results based on experimenta-

tion).

The processing of TOA estimates and the design of techniques for impairments

mitigation depend on the topology and configuration of the localization system. In

the active case, the TOA estimates correspond to the time taken by the signal to

propagate along the direct path from transmitter to receiver. In the passive case,

the TOA estimate correspond to the time taken by the signal to propagate along the

direct path from the transmitter to the target and the reflected path from the target

to the receiver.

2.2 Location Inference Phase

Localization and tracking can be distinguished by considering the first as a static

estimation problem (parameter estimation, where the parameter is the target’s po-

sition) and the second as a dynamic estimation problem (state estimation, where

the state is the target’s trajectory and/or speed). The purpose of the localization

and tracking algorithm is to provide an estimate of tags’ position starting from TOA

and/or AOA measurements provided by the receiver. From the algorithmic point

of view, the estimate of the node position depends on measurements (observations)

and prior knowledge.

The estimation of a static parameter can be done by following a Bayesian or

non-Bayesian approach. In the first case, the target position p is considered as a

random variable with an associated prior probability distribution function (PDF)

f(p). Therefore, a maximum a posteriori probability (MAP) estimator can be em-

ployed, where the posterior PDF f(p|z) is conditioned on the measurements z and

the estimated position is

p̂ = argmax
p̃∈A

f(p̃|z) = argmax
p̃∈A

f(z|p̃)f(p̃) . (2.1)

where A is the locus of point representing the monitored area. In the second case,
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the target position is considered as an unknown constant (nonrandom case) with

no prior PDF associated. Therefore, a maximum likelihood (ML) estimator can be

employed, where the likelihood function is the PDF f(z|p̃) of the measurements z

conditioned on p̃ and

p̂ = argmax
p̃∈A

f(z|p̃) . (2.2)

The ML estimator under normal error distribution assumption converges to a least

squares (LS) estimator.

The tracking process involves the estimation of position and velocity of the dy-

namic target. A dynamic system can be fully described by two models: the mobility

model g(·), which relates the current state vector to the prior state vector, and the

perception model h(·), which relates the observation data to the current state vector

as

pn = gn(pn−1,vn−1) (2.3)

zn = hn(pn,un) (2.4)

where pn is the state vector at time tn, vn is the process noise vector, zn is the

measurements collected by sensors at time tn, and un is the sensor noise. In general,

these two equations are nonlinear. The state estimator, also referred to as filter,

represents the recursive estimation of the state p̂n from the measurements z(1:n) =

{z1, z2, . . . , zn} where zm are the measurements obtained at the time indexed by m.

The Bayesian filters rely on the quantification of the posterior PDF, the positional

belief, and require the PDF of the current state conditional on the previous state,

and the PDF of the observation state conditional on the current state as [15]

f(pn|z1, ..., zn) =
f(zn|pn)f(pn|z1, ..., zn−1)

f(zn|zn−1)
= C f(zn|pn)f(pn|z1, ..., zn−1) (2.5)

where C is a normalization constant. Different implementations of the posterior

PDF lead to different state estimators. Here, we focus on Kalman Filter (KF) and

particle filter (PF), which are largely adopted solutions.

Kalman Filter and Extended Kalman Filter When the mobility and per-

ception models are linear, and noises are Gaussian distributed vn ∼ N (0,Qn) and

un ∼ N (0,Rn) then the equations reduce to
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pn = Fnpn + vn−1 (2.6)

zn = Hnpn + un (2.7)

where Fn and Hn are assumed known and named state evolution and measurement

matrix, respectively. The KF represents the mathematical solution of this problem,

where the prediction phase is given by

p̂n|n−1 = Fnp̂n−1|n−1

Pn|n−1 = FnPn−1|n−1F
T
n +Qn (2.8)

where p̂n|n−1 and Pn|n−1 are the a posteriori state and covariance estimates at time

n given observations up to n. The update phase is given by

p̂n−1|n−1 = p̂n|n−1 +Kn

(
zn −Hnp̂n|n−1

)

Pn−1|n−1 = (I−KnHn)Pn|n−1 (2.9)

where Kn is called Kalman gain and is given by

Kn = Pn|n−1H
T
n

(
HnPn|n−1H

T
n +Rn

)−1
. (2.10)

The extended Kalman filter (EKF) is a version of the KF that allows non-linear

mobility and perception models. In particular, when gn(·) and hn(·) are non-linear

functions, the mobility and perception matrix are given by

Fn =
∂g

∂p

∣∣∣∣
p̂n|n

Hn =
∂h

∂p

∣∣∣∣
p̂n|n−1

. (2.11)

Particle Filter The key idea of a PF is to represent the posterior distribution

(the belief), by a set of random samples (particles) with associated weights as

p(pn|z1, ..., zn) ≈
Npar∑

i=1

wn,iδ(pn − sn,i) (2.12)

where Npar is the number of particles, δ(·) is the Delta function, wn,i ≥ 0 ∀n, i is the
weight for particle i at time index n, and

∑Npar

i=1 wn,i = 1. The weights are chosen,
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for example, using the principle of importance sampling in which a distribution of

samples is considered with more dense samples where it is more probable that the

object is located. The main important recursive steps for evaluating the ith particle

can be summarized as follows

sn,i ∼ p(pn|pn−1) mobility model (2.13)

wn,i = wn−1,i p(zn|sn,i) perception model . (2.14)

In case of a Gaussian mobility model, the (2.13) becomes

p(pn|pn−1) =
1√
2πσm

e
− ∥pn−µn∥2

2σ2
m (2.15)

where the standard deviation σm represents the uncertainty on the target movement,

and the mean µn depends on both pn−1 and intra-node measurements.

For N independent observations, the perception model in (2.14) is given by

p(zn|pn) =
N∏

i=1

p(zn,i|pn) (2.16)

where zn,i is the ith measurement at time index n. A perception model with Gaus-

sian distribution is assumed. For example, if the measurement zn,i is a distance

measurement between the ith reader and the tracked tag, the perception model is

given by

p(zn,i|pn) =
1√
2πσp

e
−
(zn,i−∥pn−ri∥)

2

2σ2
p (2.17)

where ri is the position of the ith reader. The standard deviation σp depends on

both the accuracy of localization technology and signal propagation conditions.

2.3 Location Inference with Observation Selection

A set z of of Nmeas observations collected in diverse spatiotemporal conditions is

obtained for a target at p. In inference theory, the presence of non-representative

and biased observations (also known as non-representative outliers [16]) leads to

inaccurate parameter estimation. Therefore, range estimates related to multipath,

clutter, and signal obstructions degrade the accuracy of position estimation. Low-

complexity techniques are proposed to select a subset zsel of L ≤ Nmeas elements
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of the observation vector that contains representative observations for the target

position estimation. Such selection techniques are based on signal features that

can be extracted in blind conditions (i.e., without prior information). There are

several algorithms that differ from how the nodes estimate and how the estimates

are propagated in the network. The choice of the localization algorithm is driven by

the trade-off between performance and complexity, as well as by prior knowledge of

the environment.

The localization complexity in the presence of observation selection, C(L,Nmeas),

is now determined, where L is the number of selected observations and Nmeas is the

total number of available observations. Such complexity is that of the localization

algorithm when all observations available are used (L = Nmeas), whereas it also

depends on the complexity of feature evaluation and observation selection when a

subset of the available observations is used.

For example, the estimation of target position via LS algorithm based on range

measurements is a NP-hard problem with an exponential complexity on the number

of observations O (Nm) [17]. In the following, Cℓ(N) denotes the complexity of

the localization algorithm as a function of the number N of processed observations,

which is N = L with selection of representative observations and N = Nmeans without

selection. Therefore, the complexity for target localization without (L = Nmeas) and

with (L < Nmeas) subset selection of representative observations is given by

C(L,Nmeas) =

⎧
⎨
⎩
Cℓ(Nmeas) L = Nmeas

Cℓ(L) + Cf(Nmeas) + Cs(Nmeas) L < Nmeas

(2.18)

where Cf(Nmeas) is the complexity of feature evaluation and Cs(Nmeas) is the com-

plexity of the observation selection (sorting). The term Cs(Nmeas) depends on the

sorting algorithm used and is asymptotically quadratic in a worst case analysis

Cs(N) = O(N2) [18]. When the term Cf(Nmeas) is a linear function with the number

of observations, O(Nmeas), the comparison between the computational complexity of

localization with and without observation selection depends on the complexity of the

localization algorithm Cℓ(N). For example, Cℓ(Nmeas) = O (Nm
meas) in the case of a

localization algorithm with complexity exponential on the number of observations.

In such a case, the selection of representative observations enables significant savings

in complexity with m ≥ 2. A typical value for algorithms operating matrix inversion,

such as LS, is m = 3.
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Chapter 3

Wideband Ranging

Wideband ranging is a key enabler for emerging applications, such as logistic, safety,

security, and military, relying on accurate location awareness [5, 19–26]. The local-

ization accuracy of navigation and radar systems is affected by the quality of range

information [27–36]. Range information such as range likelihood or range estimate

can be extracted from the received signals for soft-decision or hard-decision localiza-

tion, respectively [9, 37, 38]. The quality of range information depends on network

intrinsic properties and signal processing techniques [12, 13, 39–43].

The design and analysis of ranging systems require models for describing range

information as a function of the propagation environment, signal features, and detec-

tion techniques. A popular class of ranging techniques is based on energy detection,

which determines the absence or presence of signals based on the level of energy col-

lected over certain observation intervals [44]. The EDs have been employed in many

contexts, including range estimation in positioning systems [45–47], spectrum sensing

in cognitive radios [48], and carrier sensing in network access protocols [49,50] owing

to their low-complexity implementation. Energy detection was introduced in [44]

to detect unknown deterministic signals in additive white Gaussian noise (AWGN)

channels. More recently, the analysis has been extended to detection of random sig-

nals in AWGN channels [51–53], random signals in flat fading channels [54–56], and

deterministic signals in the presence of interference [57, 58].

Classical ranging techniques based on energy detection provide hard-decision

range estimates that are consonant with the TOA of the received signals. The lack

of accurate models for range estimates in wireless propagation environments. The

range estimate is often modeled as a Gaussian random variable [11, 59–61]. coerces

the design of EDs to consider simplified assumptions such as AWGN channels. Such

15
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Figure 3.1: Soft-decision and hard-decision energy detection system.

assumptions do not account for multipath fading or obstructed propagation, leading

to inaccurate ranging in wireless environments.

A mathematical model is derived, which describes the range information by pro-

viding range likelihood and range estimate for soft-decision and hard-decision lo-

calization, respectively. The goal is to establish a range information model that

accounts for the wireless environment and signal features to facilitate the design and

analysis of optimal EDs. The key contributions are as follows:

• Derivation of a range information model for design and analysis of wideband

ranging systems based on energy detection;

• Development of low-complexity ranging algorithms with optimal EDs for soft-

decision and hard-decision localization;

• Quantification of the benefits to location awareness provided by the proposed

range information model in wireless environments.

Notation

For a random variable (RV) X, the x, fX(·), and FX(·) denote its realization, dis-

tribution function, and cumulative distribution function (CDF), respectively. Let

X ∼ N (µ, σ2) denote a Gaussian distributed RV with mean µ and variance σ2. Let

φ(·) and Φ(·) denote the PDF and CDF of a standard Gaussian RV, respectively.

The symbol ⌊x⌋ denotes the largest integer less than or equal to x. Let 0 be the

all-zero vector. The notation E c denotes the complement of an event E .
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3.1 Ranging System

This section describes the energy detection principle and formulates the statistical

model for the energy samples at the ED’s output.

3.1.1 Energy Detection

Consider a ranging system composed of a transmitter at position pt that emits Np

copies of a signal s(t) with repetition period Tp, and a receiver at position pr. Several

techniques are available in the literature to estimate the repetition period of a signal

when it is unknown, see e.g., [62]. The aim of the ranging system is to detect the

signal s(t) and to estimate its TOA τ with respect to a reference time t0 from the

received signal based on Np observations each with duration Tobs. Range and TOA

are used interchangeably throughout this dissertation since the former is a bijective

function of the latter. The reference time t0 can be the time at which the signal was

transmitted (e.g., TOA-based localization or radar systems) or be the time shared

among several receivers (e.g., TDOA-based localization systems).

For ranging techniques based on energy detection, energy samples (namely energy

bins) are collected, one for each dwell time Td. After band-pass filtering for noise

reduction (and clutter mitigation in case of SR), the received waveforms are non-

coherently accumulated for soft-decision and hard-decision processing as illustrated

in Figure 3.8. The received signal can be written as

r(t) = u(t) + n(t) (3.1)

where u(t) is the received probe signal after propagating through a wireless channel

with impulse response h(t; ς) and n(t) is the thermal noise component. The received

probe signal is a sequence of channel responses to the transmitted signal replicas,

the first of which can be written as

u(t) =

∫
h(t; ς) s(t− ς) dς . (3.2)

The received signal is first sampled by an analog-to-digital (A/D) converter with

sampling period Ts. At the sampling instant ti,p,s = i Td + p Tp + s Ts, with i =

0, 1, . . . , Nb − 1 and p = 0, 1, . . . , Np − 1, the sample of the received signal is given

by

ri,p,s = r (ti,p,s) = ui,p,s + ni,p,s (3.3)
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where ui,p,s = u (ti,p,s) and ni,p,s = n (ti,p,s). After A/D conversion, waveform samples

are processed by a quadrature integrate and dump (QID) block that squares and

integrates them over a dwell time Td to obtain Nb = ⌊Tobs/Td⌋ energy bins. The ith

energy bin corresponding to the pth observation is given by

βi,p =

Nsb−1∑

s=0

r2 (ti,p,s) =

Nsb−1∑

s=0

(ui,p,s + ni,p,s)
2 (3.4)

where Nsb = ⌊Td/Ts⌋ is the number of signal samples per bin. The energy bins

obtained from each observation interval are processed by an averaging (AVG) block

over the Np observations as

bi =
1

Np

Np−1∑

p=0

βi,p (3.5)

resulting in a vector of energy bins b = [ b0, b1, . . . , bNb−1 ]. The vector of energy bins

at the output of the ED is used as input for soft-decision or hard-decision processing.

The detection of the signal s(t) and the estimation of its TOA τ are based on the

energy bin vector b. Classical approaches follow the Bayesian hypothesis testing,

involving the comparison of the energy bins with a threshold. Such a threshold is

often chosen to achieve a constant false-alarm rate resulting in a certain misdetection

rate.

Typically, ranging is based on hard-decision algorithms which provide the TOA

estimate from the observed energy bins. If the distribution function of energy bins

is known, then soft-decision algorithms can be conceived providing a posterior PDF

of the TOA estimates. Models for soft-decision and hard-decision algorithms, which

will be provided in Section 3.2, depend on the distribution of the energy samples

given in the following.

3.1.2 Energy Samples

Each element bi of the vector b is an instantiation of the RV

Bi =

Nsb−1∑

s=0

X
(i,s)
Np

(3.6)

where

X(i,s)
n =

1

n

n−1∑

p=0

(Ui,p,s + Ni,p,s)
2 (3.7)
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is the sample average, in p, of the energy bins. In particular, Ui,p,s and Ni,p,s are

independent random samples of the received probe signal and of the thermal noise,

respectively. Note that Bi depends on the transmitted signal, thermal noise, true

TOA τ , wireless channel, and ED parameters. Let θ = [τ θh θd] where θh and θd are

the vectors of parameters representing the wireless channel and the ED, respectively.

The normalized bin BiNp/σ
2 conditioned on θ is distributed as a noncentral chi-

squared RV with NpNsb degrees of freedom, i.e.,

Bi
Np

σ2

|θ∼ χ2
NpNsb

(λi) (3.8)

where λi is the noncentrality parameter, which depends on θ, given by [44]

λi =

Np−1∑

p=0

Nsb−1∑

s=0

u2
i,p,s

σ2
(3.9)

with ui,p,s denoting the instantiation of the RV Ui,p,s and σ2 denoting the variance

of the zero-mean thermal noise. Therefore,

fBi
(b|θ) =

Np

2σ2
e−

bNp+λiσ
2

2σ2

(
bNp

λiσ2

)NpNsb−2

4

INpNsb−2

2

(√
λibNp

σ2

)
(3.10)

FBi
(b|θ) = e−

λi
2

+∞∑

r=0

(λi/2)
r

r!

γ
(

NpNsb

2
+ r, bNp

2σ2

)

Γ

(
NpNsb

2
+ r

) (3.11)

where Ia(·) is the modified Bessel function of the first kind with order a, γ(·, ·) denotes

the lower incomplete Gamma function, and Γ(·) denotes the Gamma function [63].

Remark 1. In practice, the noise variance can be estimated by observing the en-

ergy bins in an absence of the transmitted signal and each λi depends on the wireless

channel instantiation. Therefore, the derivation of the range estimation error dis-

tribution requires averaging the conditional energy bin distribution over all possible

wireless channel instantiations [37].

3.2 Range Information Model

This section offers the range information model by providing the range likelihood

and the range estimate, as well as the range error.
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3.2.1 Range Likelihood

The range likelihood function is determined from the observation bi in (3.5) and

the distribution of Bi for each energy bin, as shown in Figure 3.8. The RVs Bi’s are

independent and non-identically distributed with noncentrality parameter depending

on θ. The range likelihood function for a given bins observation can be written as

Λ(ς|b) =
Nb−1∏

i=0

fBi
(bi|ς, θh, θd) . (3.12)

Remark 2. The range likelihood function can be used for both soft-decision and

hard-decision localization. For soft-decision localization, a localization algorithm can

directly process the likelihood functions obtained from one or more receivers to deter-

mine the position of a node. For hard-decision localization, a localization algorithm

first obtains the TOA estimate by seeking a maximum of the range likelihood func-

tion, and then processes such estimates from one or more receivers to determine the

position of a node.

3.2.2 Range Estimate

A widely used approach for ranging is based on hard-decision algorithms that aim to

determine the index ı̂ of the first bin containing a portion of the transmitted signal

energy. Therefore, the index ı̂ can be thought as the instantiation of a discrete RV I

taking value in the set B = {0, 1, . . . , Nb − 1}.

Let the TOA estimate τ̂ be the instantiation of the RV T with PDF fT(t|θ).

The RV T depends on I since τ̂ is chosen from the interval [̂ı Td, (̂ı+ 1) Td). Con-

sider a bijective function τ̂ = g(̂ı), e.g., the TOA estimate is chosen to be the center

of the interval as g(̂ı) = ı̂ Td + Td/2. Therefore, the distribution function fT(t|θ) of

the TOA estimate is determined by the distribution function fI(i|θ) of I. The fT(t|θ)

depends on θ since the RV I is a function of both the wireless channel and the ED.

Various hard-decision algorithms have been proposed in the literature [29,37,64].

The most popular hard-decision algorithms are analyzed: threshold crossing search

(TCS), maximum bin search (MBS), jump back and search forward (JBSF), and

serial backward search (SBS) algorithms. These algorithms involve the comparison

of each bin value with a corresponding threshold. Let the threshold crossing event

be Cth = {∃i ∈ B : Bi > ξi} where ξi is the threshold for the bin Bi for i ∈ B. The

probability mass function (PMF) of the selected bin index I conditioned on Cth and
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fI(i|θ) =
[
1− FBi

(ξi|θ)
] ∏

j∈Ii(i)

FBj
(ξj|θ)

[
1−

∏

n∈B

FBn
(ξn|θ)

]−1

(3.16)

fI(i|θ) =
[ ∫ +∞

0

∏

j∈B\{i}

FBj
(b|θ) fBi

(b|θ) db−
∫ ξi

0

∏

j∈B\{i}

FBj
(ξ̆j(b)|θ) fBi

(b|θ) db
]

×
[
1−

∏

n∈B

FBn
(ξn|θ)

]−1

(3.19)

fI(i|θ) =
[ ∫ +∞

0

∏

j∈INw(i)

FBj
(ξ̆j(b)|θ)

∏

j∈Ic
Nw

(i)\{i}

FBj
(b|θ) fBi

(b|θ) db

−
∫ ξi

0

∏

j∈B\{i}

FBj
(ξ̆j(b)|θ) fBi

(b|θ) db

+
∑

m∈INw (i+Nw+1)

∫ +∞

ξi

∏

j∈Ii−m+Nw (i)

FBj
(ξ̆j(b)|θ) [FBi

(b|θ)− FBi
(ξi|θ)]

×
∏

j∈Ic
i−m+Nw

(i)\{i,m}

FBj
(b|θ) fBm

(b|θ) db
][
1−

∏

n∈B

FBn
(ξn|θ)

]−1

(3.23)

fI(i|θ) =
[ ∫ +∞

0

F̆Bi−1
(ξ̆i−1(b)|θ)

∏

j∈B\{i−1,i}

FBj
(b|θ)fBi

(b|θ) db

−
∫ ξi

0

∏

j∈B\{i}

FBj
(ξ̆j(b)|θ) fBi

(b|θ) db

+
∑

m∈INb−i−1(Nb)

∫ +∞

ξ̌m,i

F̆Bi−1
(ξ̆i−1(b)|θ)

∏

j∈Im−i(m)

[FBj
(b|θ)− FBj

(ξj|θ)]

×
∏

j∈Ic
m−i(m)\{i−1,m}

FBj
(b|θ) fBm

(b|θ) db
][
1−

∏

n∈B

FBn
(ξn|θ)

]−1

(3.26)

θ can be written as

fI(i|θ) = P {Si ∩ Cth|θ} /P {Cth|θ} (3.12)

where the event Si ∩ Cth|θ = {i is selected, Cth|θ} and

P {Cth|θ} = 1−
∏

n∈B

FBn
(ξn|θ) . (3.13)

For brevity, fI(i|θ) will be used to denote fI(i|Cth, θ).
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Remark 3. In general, a different threshold ξi can be used for each bin index i when

it is important to account for the variation among the energy samples.

Threshold Crossing Search

The TCS algorithm first searches for each bin value bi that crosses a threshold ξi for

all i ∈ B. The algorithm then selects, if Cth occurs, the bin index ı̂ as the smallest i

for which bi > ξi. Mathematically,

ı̂
|Cth
= min{i ∈ B|bi > ξi} . (3.14)

The PMF of the selected bin index I conditioned on Cth and θ is given by (3.12) with

event

Si ∩ Cth|θ = {Bj ≤ ξj ∀j ∈ Ii(i),Bi > ξi|θ} . (3.15)

The index set INw(m) is defined as INw(m) = B ∩ {m−Nw, m−Nw +1, . . . , m− 1}

and its complement over B as Ic
Nw

(m) = B\INw(m). The set INw(m) is empty for

Nw ≤ 0. This leads to (3.16) shown at the top of the page. The choice of the

thresholds ξi’s affects the accuracy of the TOA estimation, as well as the detection

rate and the false-alarm rate.

Maximum Bin Search

The MBS algorithm first searches for the maximum value among all the bins with

index i ∈ B. The algorithm then selects, if Cth occurs, the bin index ı̂ as the i for

which bj ≤ bi for all j ̸= i. Mathematically,

ı̂
|Cth
= argmax

i∈B
bi . (3.17)

The PMF of the selected bin index I conditioned on Cth and θ is given by (3.12) with

event

Si ∩ Cth|θ = {i is selected, i is the max, Cth|θ}

= {Bj ≤ Bi ∀j ∈ B\{i}|θ} (3.18)

\{Bj ≤ ξj ∀j ∈ B,Bj ≤ Bi ∀j ∈ B\{i}|θ} .

This leads to (3.19) shown at the top of the page, with ξ̆j(b) = min{ξj, b}. Note

that MBS with thresholds ξj = 0 ∀j ∈ B corresponds to MBS unconditioned on Cth



3.2. Range Information Model 23

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

i

f I
(i
|θ
)

Simulation Model

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

i

f I
(i
|θ
)

Simulation Model

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

i

f I
(i
|θ
)

Simulation Model

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

i

f I
(i
|θ
)

Simulation Model

Figure 3.2: Example PMF of the selected bin index for the TCS (top left), MBS

(top right), JBSF with Nw = 5 (bottom left), and SBS (bottom right) algorithms

with Td = 2ns, Np = 128, and γ = −10 dB. The first bin containing the transmitted

signal has index i = 20.

(i.e., selecting the maximum bin even when none of the bins crosses its threshold).

In such a case, (3.19) degenerates to the PMF of the selected bin index for MBS

unconditioned on Cth, which is given by

fI(i|θ) =

∫ +∞

0

∏

j∈B\{i}

FBj
(b|θ) fBi

(b|θ) db .

Jump Back and Search Forward

The JBSF algorithm first identifies the index m corresponding to the maximum bin

value, jumps back to the bin with smallest index in INw(m), and searches forward

for each bin value bi that crosses a threshold ξi for all i ∈ INw(m). Here Nw denotes

the window length. For example, the window length Nw can be chosen according to

the channel delay spread and the transmitted signal. The algorithm then selects, if

Cth occurs, the bin index ı̂ as the smallest i for which bi > ξi or as m if none of them

crosses the threshold. Mathematically,

ı̂
|Cth
= min{{i ∈ INw(m)|bi > ξi} ∪ {m}} . (3.20)
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The PMF of the selected bin index I conditioned on Cth and θ is given by (3.12) with

events

Si ∩ Cth|θ = Mi|θ ∪Mc
i |θ (3.21a)

Mi|θ = {i is selected, i is the max, Cth|θ} (3.21b)

Mc
i |θ = {i is selected, i is not the max, Cth|θ} . (3.21c)

In particular,

Mi|θ = {Bj ≤ ξj ∀j ∈ INw(i),Bj ≤ Bi ∀j ∈ B\{i}|θ}

\{Bj ≤ ξj ∀j ∈ B,Bj ≤ Bi ∀j ∈ B\{i}|θ} (3.22a)

Mc
i |θ =

⋃

m∈INw(i+Nw+1)

{Bj ≤ ξj ∀j ∈ Ii−m+Nw(i), (3.22b)

Bi > ξi,Bj ≤ Bm ∀j ∈ B\{m}|θ} .

This leads to (3.23) shown at the top of previous page. The product is equal to 1

and the sum is equal to 0 if evaluated over an empty index set. Note that JBSF with

Nw = 0 corresponds to MBS. In such a case, (3.23) degenerates to (3.19).

Serial Backward Search

The SBS algorithm first identifies the index m corresponding to the maximum bin

value, and searches backward for each bin value bi that crosses a threshold ξi for

all i ∈ Im(m). The algorithm then selects, if Cth occurs, the bin index ı̂ as the the

smallest i for which bj > ξj for all j ∈ Im−i(m) or as m if none of them crosses the

threshold. Mathematically,

ı̂
|Cth
= min{{i ∈ Im(m)|bj > ξj ∀j ∈ Im−i(m)} ∪ {m}} . (3.24)

The PMF of the selected bin index I conditioned on Cth and θ is given by (3.12) with

the events as in (3.21). In particular,

Mi|θ = {Bi−1 ≤ ξi−1 if i > 0,Bj ≤ Bi ∀j ∈ B\{i}|θ}

\{Bj ≤ ξj ∀j ∈ B,Bj ≤ Bi ∀j ∈ B\{i}|θ} (3.25a)

Mc
i |θ =

⋃

m∈INb−i−1(Nb)

{Bi−1 ≤ ξi−1 if i > 0, (3.25b)

Bj > ξj ∀j ∈ Im−i(m),Bj ≤ Bm ∀j ∈ B\{m}|θ} .
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This leads to (3.26) shown at the top of previous page, with

F̆Bk
(·|θ) =

⎧
⎨
⎩
FBk

(·|θ) for k ∈ B

1 for k /∈ B

and ξ̌m,i = max{ξj ∀j ∈ Im−i(m)}.

To illustrate how the hard-decision algorithms operate, consider a simple case of

Nb = 8 bins (i.e., B = {0, 1, . . . , 7}) with a vector of bin instantiations and a vector

of thresholds given by

b = [0.8, 1.2, 1.3, 2.3, 2.5, 2.8, 2.4, 1.2]

ξ = [1.3, 1.1, 0.9, 2.5, 1.4, 2.9, 1.9, 1.4] .

Note that the threshold crossing event is true (bins with index 1, 2, 4, and 6 cross

the corresponding thresholds) and the algorithms select a bin index ı̂ according to

(3.14), (3.17), (3.20), and (3.24). In particular, ı̂ = 1, 5, 2, and 4 for TCS, MBS,

JBSF with Nw = 3, and SBS, respectively.

Remark 4. Recall that the PMFs fI(i|θ) for hard-decision algorithms derived above

are conditioned on the threshold crossing event Cth and θ. Expressions for the joint

PMF of I and Cth conditioned on θ can be obtained by f̌I(i|θ) = fI(i|θ)
[
1−

∏
n∈B FBn

(ξn|θ)
]
.

The distribution fI(i|θ) of the selected bin index for numerous other hard-decision

algorithms can be derived following a similar approach.

Figure 3.2 shows examples of PMF fI(i|θ) for the TCS, MBS, JBSF with Nw = 5,

and SBS algorithms with Td = 2ns, Np = 128, and γ = −10dB, according to the

IEEE 802.15.4a standard for indoor propagation [65]. It can be observed that the

PMFs derived based on the proposed range information model are in agreement

with those obtained through sample-level simulations (i.e., simulating the wireless

channel and the ED operation). In particular, theory and simulations show the same

bin index for which the PMF reaches its maximum value.

3.2.3 Range Error

The distribution of the TOA estimation error is now determined, which depends on

the particular hard-decision algorithm. The TOA estimation error e(τ) = τ̂ − τ is

an instantiation of the RV E = T− τ , and thus

fE(e|θ) = fT(e + τ |θ) . (3.26)
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For a given τ , E belongs to a finite set Eτ = {T − τ s.t. T ∈ g(B)}, where g(B)

represents a finite set of TOA estimate. In the absence of a prior information on the

true TOA, τ can be modeled as a uniform RV over the interval [0, Ta], where Ta is

the maximum possible TOA that depends on the wireless environment. This results

in Eτ = [−Ta, Tobs] with, in general, 0 < Ta ≤ Tobs. When the wireless environment

is not known, Ta can be chosen as Ta = Tobs. Therefore,

fE(e|θd) =
1

Ta

∫ Ta

0

fE(e|θd, τ) dτ (3.27)

where

fE(e|θd, τ) =

⎧
⎨
⎩

∣∣∣d g
−1(e+τ)
d e

∣∣∣ fI(g−1(e+ τ)|θd, τ) for e ∈ Eτ

0 otherwise
(3.28)

with fI(i|θd, τ) = Eθh
{fI(i|θ)}. For specific hard-decision algorithms, (3.28) can be

evaluated by substituting the PDF and CDF of Bi given respectively by (3.10) and

(3.11) into the specific conditional PMF fI(i|θ) derived in Section 3.2.2 and taking

the expectation over the vector of noncentrality parameters λ = [λ0,λ1, . . . ,λNb−1].

Remark 5. The distribution of the TOA estimate requires both the evaluation of

cumbersome expressions and the expectation over all the channel parameters. This

calls for a tractable range information model.

3.3 Tractable Range Information Model

The design of soft-decision and hard-decision algorithms demands tractable expres-

sions for the range information model, which can be obtained by simplifying fBj
(b|θ)

and FBj
(b|θ). First, recall that the chi-squared RV converges in distribution to a

Gaussian RV as the number of degrees of freedom increases. Therefore BiNp/σ
2 in

(3.8) converges in distribution as

Bi
Np

σ2

d−→ B̃i
Np

σ2

|θ∼ N (NpNsb + λi, 2(NpNsb + 2λi)) (3.29)

and consequently

fBi
(b|θ) ≃ Np/σ

2

√
2(NpNsb + 2λi)

φ

(
bNp/σ

2 −NpNsb − λi√
2(NpNsb + 2λi)

)
(3.30)

FBi
(b|θ) ≃ Φ

(
bNp/σ

2 −NpNsb − λi√
2(NpNsb + 2λi)

)
. (3.31)
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The above approximation depends on Np Nsb and is accurate for Np 2 1 or Td 2
Ts. Note that the above distributions depend on the instantiation of the wireless

channel through θh in θ. However, the knowledge of the exact channel instantiation

is typically not available.

The range information model is further simplified by considering distributions

that depend on channel statistics rather than channel instantiations, i.e., on θ =

[τ θh θd] instead of θ, where θh represents the channel statistics. Recall that the

sample average X
(i,s)
n in (3.7) depends on [τ θh θd] through Ui,p,s and on θd through

Ni,p,s. Therefore we approximate X
(i,s)
n with Y

(i,s)
n in which Ui,p,s is replaced with a

deterministic quantity Ui,s that depends on θ as

Y(i,s)
n =

1

n

n−1∑

p=0

(Ui,s + Ni,p,s)
2 . (3.32)

A possible choice is Ui,s = E {Uν}1/ν , where E {Uν} is the νth order moment of U,

which is consistent in terms of the unit measure of Ui,s and Ni,p,s. Also, E {Uν}1/ν

is monotonically increasing in ν by Lyapunov’s inequality. The choice of Ui,s is

motivated by the following lemma.

Lemma 1. The sample average Z
(i,s)
n ! X

(i,s)
n − Y

(i,s)
n converges almost surely to 0 if

and only if U2
i,s = E {U2}.

Proof. First note that

Z(i,s,ν)
n =

1

n

n−1∑

p=0

[
U2
i,p,s − U2

i,s + 2Ni,p,s (Ui,p,s − Ui,s)
]
.

Therefore, as n increases, Z
(i,s)
n converges to E {U2}−U2

i,s almost surely by the strong

law of large numbers [66–68]. Thus, X
(i,s)
n converges almost surely to Y

(i,s)
n if and only

if U2
i,s = E {U2}.

Lemma 1 suggests

Bi ≃
1

Np

Np−1∑

p=0

Nsb−1∑

s=0

(√
E
{
U2
i,p,s

}
+ Ni,p,s

)2

(3.33)

implying that the noncentrality parameter for BiNp/σ
2 can be written as λi ≃ λi,

where

λi =

Np−1∑

p=0

Nsb−1∑

s=0

E

{
U2
i,p,s

}

σ2
. (3.34)



28 Chapter 3. Wideband Ranging

Remark 6. The dependence on wireless channel instantiations can be removed by

substituting each noncentrality parameter λi, which depends on θ, with its expected

value λi, which depends on θ, in all of the above distributions.

The impulse response of a wideband wireless channel at time t is commonly

described by [69–73]

h(t; ς) =

L(t)∑

l=1

αl(t) δ(ς − τl(t)) (3.35)

where L(t) is the number of multipath components, and αl(t) and τl(t) are the

amplitude gain and the arrival time of the lth path, respectively. The L(t), αl(t),

and τl(t) are considered time-invariant over an observation time.

For a resolvable multipath channel, i.e., the path interarrival time intrinsic to the

wireless environment is larger than the temporal duration of the transmitted signal,

E
{
U2
i,p,s

}
in (3.34) can be written as

E
{
U2
i,p,s

}
≃ E

{ L∑

l=1

α2
l s

2(ti,p,s − τl)
}
. (3.36)

Therefore, the calculation of λi requires the averaging with respect to the channel

nuisance parameters αl’s and τl’s in θh. The complexity of such calculation depends

on the joint distribution of L, αl’s, and τl’s. However, the resolution of the ED is

limited by the dwell time Td. Therefore, the statistics of the energy bins can be

determined by considering a tapped-delay-line model [7,73–76]. In particular, h(t; ς)

can be replaced by h̆(t; ς) =
∑L̆

l=1 ᾰlδ(ς − τ̆l), where L̆ is a deterministic number of

path, τ̆l = τ + l∆ with ∆ deterministic, and L̆∆ is the approximate dispersion of

the channel. For example, ∆ can be chosen as the dwell time, the inverse of the

bandwidth, or the average interarrival time of the paths. This results in

E
{
U2
i,p,s

}
≃

L̆∑

l=1

E
{
ᾰ2
l

}
s2(ti,p,s − τ̆l) . (3.37)

Substituting (3.37) in (3.34), the expected value of the noncentrality parameter

for the ith bin becomes

λi =

Np−1∑

p=0

Nsb−1∑

s=0

L̆∑

l=1

E {ᾰ2
l }

σ2
s2(ti,p,s − τ̆l) . (3.38)



3.3. Tractable Range Information Model 29

115 116 117 118 119 120
0.0

0.2

0.4

0.6

0.8

1.0

b [dBbin]

C
D
F
o
f
th
e
en
er
g
y
b
in

(A)

(B)

(C)

(D)

Figure 3.3: Example CDF of the energy bin value for different values of Np and Td

with γ = −20 dB: (A) Np = 128, Td = 2ns; (B) Np = 16, Td = 2ns; (C) Np = 128,

Td = 4ns; (D) Np = 16, Td = 4ns. Simulation results are shown in symbols and

theoretical results according to (3.39) are shown in solid lines.

Using (3.38) instead of λi in all the above distributions, one can obtain the tractable

range information model that depends only on θ instead of θ. For instance, Bi can

be approximated by Bi with conditional CDF given by

F
Bi
(b|θ) = Φ

⎛
⎝bNp/σ

2 −NpNsb − λi√
2(NpNsb + 2λi)

⎞
⎠ (3.39)

which is obtained from (3.31) by replacing λi with λi.

Figure 3.3 shows the CDF of the energy bin for different numbers of observations

and dwell times with received signal-to-noise ratio (SNR) per pulse γ = −20dB

according to the IEEE 802.15.4a standard for indoor residential LOS environments

[65]. More details about the scenario will be provided in Section 3.3.2 where the case

study is presented. It can be observed that the theoretical CDF of the bin value

(3.39) accurately describes the empirical CDF obtained by sample-level simulations.

Using the results in this section, tractable expressions of the distribution of the

TOA estimation error can be derived for hard-decision algorithms. In particular,

substituting the PDF and CDF of Bi given respectively by (3.10) and (3.11) into the
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conditional PMF fI(i|θ) in Section 3.2.2 for specific hard-decision algorithms, and

replacing each λi with λi, (3.28) is simplified into a tractable form.

Remark 7. The parameters λi’s depend on θh through L̆, the statistics of ᾰl, and

∆. The λi’s depend on θd through Nsb and ti,p,s, which further depends on Td, Tp,

and Ts.

3.3.1 Design of the Energy Detector

This section aims to present the design of energy detection algorithms based on the

proposed range information model. Such a model enables us to determine ED param-

eters (e.g., the choice of the thresholds, window length, and dwell time) according

to different optimization criteria and constraints.

The design of ED commonly involves the probability of detection and that of

false-alarm. The detection event occurs when, in a presence of the transmitted

signal, the presence of the signal is correctly detected. The probability of such an

event is given by

Pd(θd) =
∑

i∈B

f̌I(i|θd,λ ̸= 0) . (3.40)

The false-alarm event occurs when, in an absence of the transmitted signal, the

presence of the signal is incorrectly detected due to noise. The probability of such

an event is given by

Pfa(θd) =
∑

i∈B

f̌I(i|θd,λ = 0) . (3.41)

For a given minimum tolerable level of detection probability P ⋆
d or maximum toler-

able level of false-alarm probability P ⋆
fa, constraints on parameters value θd can be

obtained. For example, Pfa(θd) is non-increasing with the threshold ξ and therefore

a minimum value ξfa can be determined for a given P ⋆
fa.

An important metric for ED design is the mean squared error (MSE) of the TOA

estimate. When conditioned on the detection of the transmitted signal, the MSE of

the TOA estimate is given by

ϱt(θd) =

∫ +∞

−∞

e2fE (e|θd) de . (3.42)
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Recalling that the TOA estimation error belongs to a finite set Eτ , the MSE of the

TOA estimate for hard-decision algorithms can be written as

ϱt(θd) =
1

Tobs

Nb−1∑

i=0

∫ Tobs

0

(g(i)− τ)2fI(i|θd, τ)dτ . (3.43)

The design of an ED minimizing the MSE of the TOA estimate with a guaranteed

minimum level of detection probability can be obtained by solving the following

constrained optimization problem

θ̂d = argmin
{θd :Pd(θd)≥P ⋆

d}
ϱt(θd) . (3.44)

Instead of guaranteeing a minimum detection probability, the design of an ED can

minimize the MSE of the TOA estimate with a guaranteed maximum level of false-

alarm probability as

θ̂d = argmin
{θd :Pfa(θd)≤P ⋆

fa}
ϱt(θd) . (3.45)

The design of an ED can also be formulated to maximize the detection probability

Pd(θd) for a given maximum tolerable MSE ϱ⋆tof the TOA estimate, i.e.,

θ̂d = argmax
{θd : ϱt(θd)≤ϱ⋆t }

Pd(θd) . (3.46)

Alternatively, the ED design can be based on a hybrid objective function where the

optimization problem is formulated to minimize a metric involving the MSE of the

TOA estimate and a penalty. The mathematical formulation of such an optimization

problem can be written as

θ̂d = argmin
θd

υt(θd) (3.47)

where

υt(θd) = ϱt(θd)Pd(θd) + ν(θd)
[
1− Pd(θd)

]
(3.48)

is the unconditional MSE of the TOA estimate and ν(θd) is a penalty in an ab-

sence of detection. The penalty ν(θd) can be chosen as a function of the detection

probability.

The above optimization problems are typical examples for the design of a ranging

system. However, the proposed range information model is general and can be used to

formulate other optimization problems that arise from energy detection applications.
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3.3.2 Results

This section defines the performance metrics, describes the case study scenario, and

presents performance results based on the developed theory and sample-level simu-

lations.

Performance Metrics

Performance of the proposed range information model is evaluated in terms of the

PMF accuracy, ranging accuracy, and localization accuracy defined as follows.

The following metrics will be used as a measure of the distance between the PMF

fI(i|θ) of the selected bin obtained from the proposed range information model and

that obtained through sample-level simulations. Let p1, p2 be two possible PMFs

representing a RV taking values on a set X , e.g., one approximate and one exact.

The Jensen–Shannon divergence (JSD) is defined as [77]

DJS {p1, p2} =
1

2

∑

i∈X

p1(i) log

(
2 p1(i)

p1(i) + p2(i)

)

+
1

2

∑

i∈X

p2(i) log

(
2 p2(i)

p1(i) + p2(i)

)
. (3.49)

Other important metrics are the root-mean-square error (RMSE), which is defined

as

DRMSE {p1, p2} =

[
1

|X |

∑

i∈X

|p1(i)− p2(i)|
2

]1/2

(3.50)

and the maximum error, which is defined as

DME {p1, p2} = max
i∈X

{|p1(i)− p2(i)|} . (3.51)

The ranging accuracy is determined in terms of CDF of the TOA estimation

error FE(e|θd) and in terms of RMSE of the TOA estimate ρt(θd) =
√

ϱt(θd). The

CDF FE(e|θd) and the RMSE ρt(θd) are obtained starting from (3.27) and (3.42),

respectively.

The localization accuracy is determined in terms of the localization error outage

(LEO). The LEO is defined as the probability that the localization error is above a

maximum tolerable value ε⋆, i.e.,

Po(θd) = Eθh

{
(ε⋆,+∞){ε(p|θ)}

}
(3.52)
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where, for a set A,

A{a} =

⎧
⎨
⎩
1 for a ∈ A

0 otherwise

and ε(p|θ) = ∥p̂(θ)−p∥ is the absolute value of the localization error, in which p̂(θ)

and p are the estimated position and the true position, respectively.

Wireless Scenario and Energy Detector Setting

Consider a network of anchors (nodes with known position) aiming to localize agents

(nodes in unknown positions) in an indoor environment. Specifically, the network is

composed of four anchors located at the corners of a square with side length equal

to 10m. Each anchor emits a sequence of UWB root-raised cosine pulses with pulse

repetition period Tpr = 150 ns. The transmitted power spectral density is compliant

with the emission masks according to the following regulations: (a) Japan (Asia

Pacific Telecommunity); (b) Europe (European Telecommunications Standards In-

stitute) and Korea (Asia Pacific Telecommunity); (c) USA (Federal Communication

Commission); and (d) China (Asia Pacific Telecommunity). The wireless medium

follows the IEEE 802.15.4a channel model for UWB indoor residential LOS environ-

ments [65] with Ta = 50 ns.

The received signal is processed based on energy detection with observation time

Tobs = Tpr. In the case of hard-decision algorithms, ξi = ξ ∀i ∈ B is considered for

illustration. The value ξ is commonly chosen by accounting only for the randomness

of the noise and discarding that of multipath propagation [78–80]. Alternatively, in

[37], a simple criterion to determine a threshold is proposed based on the probability

of early detection and on the knowledge of noise power. In contrast, the proposed

range information model enables us to choose a threshold that accounts for the

randomness of the wireless environments. The received SNR per pulse is γ = Ep/N0

where Ep is the energy of the received signal pulse and N0 is the one-sided power

spectral density (PSD) of the noise component. The noise has mean zero and variance

σ2 = N0W where W is the bandwidth of the transmitted signal that depends on the

emission masks. Unless otherwise stated, the results in the following are provided

for an emission mask as defined by the Federal Communication Commission with

bandwidth W = 7.5GHz, a number of bins Nb = 75, and a dwell time Td = 2ns.

The threshold is chosen according to (3.44) as the ξ that minimizes the MSE of the

TOA estimate with a guaranteed minimum level of detection probability P ⋆
d = 95%.
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Figure 3.4: Example CDF of the TOA estimation error for the TCS, MBS, JBSF

with Nw = 5, and SBS algorithms with different values of Np and γ: (A) Np = 128,

γ = −10 dB; (B) Np = 16, γ = −10 dB; (C) Np = 128, γ = −20 dB; and (D)

Np = 16, γ = −20 dB. Theoretical results are shown in solid lines and simulation

results are shown in symbols.
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Performance Results

Table 3.1 provides the JSD, RMSE, and maximum error between the PMF fI(i|θ)

of the selected bin obtained from the proposed range information model (i.e., (3.16),

(3.19), (3.23), or (3.26)) and that obtained through sample-level simulations for TCS,

MBS, JBSF with Nw = 5, and SBS algorithms with different values of Np and of

γ. It can be noticed that the proposed model for fI(i|θ) is accurate, having a small

distance with respect to the empirical PMF in all the settings.

Figure 3.4 shows the CDF of the TOA estimation error (3.28) for hard-decision

algorithms with different values of Np and γ. Two different regions can be discerned

for the TOA estimation error: the negative errors (light gray region) due to early

detection caused by the noise, and the positive errors (light blue region) due to late

detection caused by the wireless channel. It can be observed that the results obtained

from the proposed range information model are in agreement with those obtained

through sample-level simulations in both regions. It is apparent that the distribution

of the TOA estimation error is non Gaussian. Furthermore, the behaviors of the

hard-decision algorithms are different in the early detection region, in which the

errors are due to false alarms. This behavior is due to the fact that the threshold is

chosen to minimize the MSE of the TOA estimate with a guaranteed minimum level

of detection probability. Note that, while practical systems typically operate with

high Np values, a conservative scenario with small Np values up to 128 is considered

here to strain the proposed range information model.

The absolute error of the TOA estimate for Np = 128 and γ = −10 dB per pulse

is evaluated to be below 3.33 ns (corresponding to about 1m) in 72%, 56%, 73%,

and 61% of the instances for TCS, MBS, JBSF with Nw = 5, and SBS algorithms,

respectively. The absolute error of the TOA estimate is evaluated to be below 5 ns

(corresponding to about 1.5m) in 79%, 79%, 81%, and 80% of the instances for TCS,

MBS, JBSF with Nw = 5, and SBS algorithms, respectively.

Figure 3.5 shows the unconditional RMSE of the TOA estimate for the TCS

algorithm as a function of the threshold-to-noise ratio (TNR) per pulse ξ/(Np σ
2) for

different values of Np and γ. The unconditional RMSE is defined as
√

υt(θd) where

υt(θd) is given in (3.48) with ν(θd) = T 2
obs, which is the maximum possible MSE. It

can be seen that the results obtained from the proposed range information model are

in agreement with those obtained by sample-level simulations. The accuracy of the

proposed model enables us to determine the optimal TNR value that minimizes the

RMSE, which is important for ED design. It can also be observed that the minimum
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Np = 16 Np = 128

γ = −20 dB γ = −10 dB γ = −20 dB γ = −10 dB

TCS 0.015 0.013 0.017 0.009

MBS 0.009 0.013 0.010 0.016

JBSF 0.009 0.012 0.010 0.015

SBS 0.009 0.012 0.010 0.015

Np = 16 Np = 128

γ = −20 dB γ = −10 dB γ = −20 dB γ = −10 dB

TCS 0.006 0.007 0.006 0.011

MBS 0.004 0.006 0.004 0.012

JBSF 0.004 0.006 0.004 0.009

SBS 0.004 0.006 0.004 0.010

Np = 16 Np = 128

γ = −20 dB γ = −10 dB γ = −20 dB γ = −10 dB

TCS 0.023 0.037 0.028 0.061

MBS 0.010 0.040 0.011 0.089

JBSF 0.010 0.040 0.010 0.054

SBS 0.010 0.038 0.010 0.070

Table 3.1: DJS {p1, p2} (top), DRMSE {p1, p2} (middle), and DME {p1, p2} (bottom) for

theoretical and simulated PMF of the selected bin for hard-decision algorithms.
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RMSE decreases with Np for a given γ. On the other hand, the RMSE varies more

rapidly with TNR as Np increases, revealing that the determination of the optimal

threshold is critical for large Np.

Figure 3.6 shows the unconditional RMSE of the TOA estimate for the TCS

algorithm as a function of the TNR per pulse ξ/(Np σ
2) for different emission masks,

Np = 16, and γ = −10 dB. In particular, emission masks that are compliant with

the regulations of the following countries are considered: (a) China (W = 0.6GHz);

(b) Japan (W = 1.4GHz); (c) Europe lower band/Korea (W = 1.7GHz); and (d)

USA (W = 7.5GHz). It can be observed that the results obtained from the proposed

range information model are in agreement with those obtained through sample-level

simulations for all the values of the bandwidth. As shown in Figure 3.5, the optimal

TNR that minimizes the RMSE can be obtained from the proposed range information

model. Note also that the RMSE varies more rapidly as the bandwidth W increases,

revealing that the determination of the optimal threshold is critical for large W .

The localization accuracy of a network in which the agent position is determined

according to the ML criterion is now discussed. In particular, the ML criterion

selects the agent position p̂ that maximizes the product of range likelihoods, each in

the form of (3.54) as a function of the TOA corresponding to the relative position

between the agent and each anchor. Figure 3.7 shows the LEO as a function of the

maximum tolerable localization error for soft-decision and hard-decision localization

with Td = 2ns, Np = 128, and different values of the SNR per pulse received at 1m

denoted by γ0. For hard-decision localization the JBSF algorithm with Nw = 2, and

5 as well as the TCS algorithm are considered; the threshold ξ is chosen according

to (3.44) with P ⋆
d = 95%. It can be observed that the LEO obtained from the

range information model is in agreement with that obtained through sample-level

simulations. The effect of Nw on the LEO is evident, especially for the smaller

γ0. It can be seen that a localization error smaller than 0.09, 1.45, 1.50, and 1.37

meters can be achieved 95% of the time for case (A), (B), (C), and (D), respectively,

with γ0 = 10 dB. Similarly, 0.08, 0.39, 0.39, and 0.40 meters can be achieved under

the same settings with γ0 = 30 dB. The results show that soft-decision localization

significantly outperforms hard-decision localization.
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Figure 3.5: RMSE of the TOA estimate as a function of TNR per pulse for different

values of Np and γ: (A) Np = 128, γ = −20 dB; (B) Np = 128, γ = −10 dB; and

(C) Np = 16, γ = −20 dB; (D) Np = 16, γ = −10 dB; (E) Np = 1, γ = −20 dB; and

(F) Np = 1, γ = −10 dB. Theoretical results are shown in solid lines and simulation

results are shown in symbols.

3.4 Range Likelihood based on a Reduced Dataset

In general, the soft-decision approach based on received samples improves the ac-

curacy of the estimate at the cost of increasing the resource utilization for commu-

nicating likelihood functions among nodes. In particular, the time complexity due

to the communication of likelihood functions among nodes, makes the hard-decision

case often preferable in the tradeoff among accuracy and complexity.

Here, soft-decision ranging techniques for wideband localization are presented.

The soft-decision ranging is based on range likelihood functions that are determined

from a reduced dataset of observations. This reduced dataset is generated by pro-

cessing the received waveform samples with energy detection techniques. The use of

a reduced dataset decreases the amount of resource utilization for commeunicating

likelihood functions among nodes. The range likelihood is evaluated by considering

two different levels of prior knowledge: (i) approximated likelihood, (ii) empirical

likelihood. The first case requires the knowledge of the channel statistic and is based

on the tractable range model derived in [81]. The second case requires a measure-
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Figure 3.6: RMSE of the TOA estimate as a function of TNR per pulse for Np = 16,

γ = −10 dB, and different emission masks: (A) China; (B) Japan; (C) Europe/Korea;

and (D) USA. Theoretical results are shown in solid lines and simulation results are

shown in symbols.

ment phase in which a reduced dataset is assembled and the empirical distribution

of the associated RVs is calculated. The localization performance will be evaluated

both via simulation and theoretical results. The key contributions are as follows:

• introduction of soft-decision localization based on a reduced dataset;

• development of low-complexity soft-decision algorithms with different levels of

prior knowledge;

• evaluation of the performance for a case study in a realistic scenario.

3.4.1 Soft-Decision Ranging with Reduced Dataset

In this section we introduce two localization algorithms based on soft-decision ranging

with reduced dataset: the energy-based soft-decision (ESD) and the threshold-based

soft-decision (TSD). A classic approach with hard-decision based on TCS is also

presented to serve as a benchmark.
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Figure 3.7: LEO as a function of the maximum tolerable localization error for soft-

decision and hard-decision localization with Td = 2ns, Np = 128, and different values

of γ0: (A) soft decision (dashed curves from left to right are for γ0 from 30 to 10 dB);

(B) JBSF with Nw = 5; (C) JBSF with Nw = 2; and (D) TCS. Theoretical results

are shown in solid lines and simulation results are shown in symbols.

Soft and Hard-Decision Ranging

Soft-decision approaches for TOA estimation consider an observation set, usually

the samples of the received waveforms, and compute the likelihood function based

on statistical models as a function of the wireless channel. Two range likelihood func-

tions are now proposed, which are determined from a reduced dataset x of variables

obtained by processing r(t) as shown in Figure 3.8.

The ESD algorithm is a soft-decision algorithm considering D = b as observation

set, where Bi with i = 1, . . . , Nbin. The RVs Bi’s are independent and non-identically

distributed with noncentrality parameter ang on θ. The range likelihood function

can be written as

ΛESD(τ |b) =

Nb−1∏

i=0

fBi
(bi|τ, θh, θd) . (3.53)

The TSD algorithm is a soft-decision algorithm considering D = {ı̂} as observa-

tion set, where ı̂ ∈ B is a selected bin index. In particular, a TCS is first performed,

which involve the comparison of each bin value bi with a corresponding threshold
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Figure 3.8: Soft-decision and hard-decision energy detection systems.

ηi [29]. Then, the observation set is {ı̂} = {min{i : bi > ηi}}, that is the first bin

crossing a threshold ξi, with ı̂ being an outcome of the RV I [81]. The range likelihood

function can be written as

ΛTSD(ς |̂ı) = fI(̂ı|ς, θh, θd) . (3.54)

where fI(̂ı|ς, θh, θd) is defined below.

The TCS is considered to compare the proposed soft-decision algorithms with a

classical hard-decision algorithm.

3.4.2 Localization via soft and hard-decision

Consider a localization system where a network of Na anchors, with the ath anchor in

pa and a ∈ A = {1, . . . , Na}, are employed to localize a target in position p. Energy

detection and hard or soft-decision ranging is performed at each anchor, providing for

the ath anchor a vector of energy bins b(a) = [b
(a)
1 , b

(a)
2 , . . . bNb

] and the selected index

ı̂ in the case of TSD and TCS. After soft-decision ranging, a localization algorithm

can directly process the likelihood functions obtained from Na anchors to estimate
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Algorithm 1 Energy-based Soft-Decision

1: for a ∈ A do

2: Λ
(a)
ESD(τ |b

(a)) =
∏Nb−1

i=0 f
B
(a)
i

(b
(a)
i |τ, θh, θd) .

3: p̂ = argmaxp
∏Na

a=1 Λ
(a)
ESD(∥pa − p∥|ba)

Algorithm 2 Threshold-based Soft-Decision

1: for a ∈ A do

2: ı̂a ← min{i ∈ B : b
(a)
i > ξi}

3: Λ
(a)
TSD(τ |̂ıa) = fI(̂ıa|τ, θh, θd)

4: p̂ = argmaxp
∏Na

a=1 Λ
(a)
TSD(∥pa − p∥|̂ıa)

Algorithm 3 Threshold Crossing Search

1: for a ∈ A do

2: ı̂a ← min{i ∈ B : ba,i > ξi}

3: τ̂a ← ı̂aTd + Td/2

4: p̂ = argminp

∑
a∈A (τ̂a − ∥pa − p∥/c)2

the position p. For example, a maximum likelihood solution is described in Alg. 1

and Alg. 2 for the ESD and TSD, respectively.

Note that the evaluation of the likelihood function requires the PDF of the energy

bins fB(b|τ, θh, θd) and fI(̂ı|τ, θh, θd) for ESD and TSD, respectively. They can be

approximated based on the mathematical model given in [81]. Alternatively, they can

be estimated based on measurements. By collecting M outcomes of the variables B

or I conditioned on the true TOA τ , the PDF can be approximated with the empirical

distributions f̂
(M)
B

(b|τ, θh, θd) or f̂
(M)
I

(̂ı|τ, θh, θd) obtained from theM measurements.

In the case of hard-decision ranging, a localization algorithm processes the TOA

estimates from the Na anchors. For example, a least square solution is described in

Alg. 3 for the TCS.

Remark: Note that the energy detection is distributed at each anchor, whereas

the localization process is centralized. Therefore, the dataset size |D| for the range

likelihood is the main parameter influencing the resource utilization for communicat-

ing the likelihood functions. In this perspective, the TSD has the minimum dataset

size |D| = |{ı̂a}| = 1 together with the TCS |D| = |{τ̂a}| = 1. The ESD has dataset

size |D| = |b| = Nb. However, the original observation dataset is |D| ≥ NsbNb.
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Figure 3.9: RMSE for different number of pulses for : (A) empirical TSD withM = 5;

(B) empirical TSD with M = 100; (C) TSD; (D) empirical ESD with M = 5; (E)

empirical ESD with M = 100; (F) ESD.

3.4.3 Results

This section describes the system settings, defines the performance metrics, and

presents performance results based on the developed theory and sample-level simu-

lations.

System Setting

Consider a network of anchors (nodes with known positions) aiming to localize agents

(nodes in unknown positions) in an indoor environment. Specifically, the network is

composed of four anchors located at the corners of a square with side length equal

to 10m. Each anchor emits a sequence of UWB root-raised cosine pulses with pulse

repetition period Tpr = 150 ns. The transmitted power spectral density is compliant

with the emission masks according to the USA regulations (Federal Communication

Commission) [82]. The wireless medium follows the IEEE 802.15.4a channel model

for UWB indoor residential LOS environments [65] and Ta = 150 ns.

The received signal is processed based on energy detection with observation time

Tobs = 256 ns. In the case of hard-decision algorithms, ξi = ξ ∀i ∈ B is considered

for illustration. The received SNR per pulse is γ = Ep/N0 where Ep is the energy of

the received signal pulse and N0 = −110 dBm/MHz is the one-sided power spectral

density of the noise component. The noise has mean zero and variance σ2 = N0W

where W is the bandwidth of the transmitted signal that is defined by the emission

masks. Unless otherwise stated, the results in the following are provided for an emis-

sion mask as defined by the Federal Communication Commission with bandwidth

W = 7.5GHz, the number of bins Nb = 128, dwell time Td = 2ns, and number of
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Figure 3.10: LEO as a function of ε⋆ with Np = 32 with: (C) TSD; (F) ESD; and (G)

TCS. The dashed blue line is the theoretical result for the TCS according to [81].
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Figure 3.11: LEO as a function of ε⋆ with Np = 1 (empty symbols) and Np = 32

(filled symbols) with: (A) empirical TSD with and M = 5; (B) empirical TSD with

M = 100; (D) empirical ESD with M = 5; and (E) empirical ESD with M = 100.
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collected pulses Np = 32.

Localization results are obtained with hard-decision and soft-decision ranging.

For the soft-decision case, we consider both the ESD and the TSD algorithms. The

energy bin distribution fB(b|τ, θh, θd) for the ESD and the selected bin distribution

fI(b|τ, θh, θd) for the TSD are obtained with the tractable model in [81] or by a

measurement phase where the distributions f̂
(M)
B

(b|τ, θh, θd) and f̂
(M)
I

(̂ı|τ, θh, θd) are

obtained as the empirical distribution conditioned on τ for a finite set T of values

and performing M diverse measurements for each value of τ ∈ T . In particular, we

considered 150 values in T linearly spaced between 0 and Ta.

Different system settings are considered and referred to as: (A) empirical TSD

with M = 5; (B) empirical TSD with M = 100; (C) TSD; (D) empirical ESD with

M = 5; (E) empirical ESD with M = 100; (F) ESD; and (G) TCS.

Performance Results

Figure 3.9 shows the RMSE for different number of Np with: (A) empirical TSD

with M = 5; (B) empirical TSD with M = 100; (C) TSD; (D) empirical ESD with

M = 5; (E) empirical ESD with M = 100; and (F) ESD. Results show that when

the value of Np is high, all the algorithms with different complexities have similar

performance. Differently, for low values of Np, the ESD outperforms the TSD for

any level of prior knowledge.

Figure 3.10 shows the LEO as a function of ε⋆ obtained with the tractable theo-

retical model and by simulation. The soft-decision ranging improve the performance

with respect to the hard-decision. In particular, the localization error is above 1m

in the 0.5% of cases with ESD, in the 5% of cases with the TSD, and in the 25% of

cases with the TCS (simulation). It can be observed that the results obtained from

the theoretical model are in agreement with those obtained through sample-level

simulations for the hard-decision case with TCS.

Figure 3.11 shows the LEO as a function of ε⋆ for (A) TSD with f̂
(M)
I

(̂ı|τ) and

M = 5; (B) TSD with f̂
(M)
I

(̂ı|τ) and M = 100; (D) ESD with f̂
(M)
B

(b|τ) and M = 5;

and (E) ESD with f̂
(M)
B

(b|τ) and M = 100. It can be observed that the ESD

outperforms the TSD and it is also more sensitive to the number of measurements

M . For Np = 1, localization error is above 1m in the 47% of cases with ESD when

M = 5 and in the 17% when M = 100. Differently, the LEO does not change

significantly with M for the TSD, where the localization error is above 1m in the

69% of cases with the TSD when M = 5 and in the 66% when M = 100.
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Chapter 4

Selection of Representative

Observations

Accurate localization via sensor radars is challenging in wireless environments with

multipath, clutter, and signal obstructions (for example caused by furniture and

walls in indoor scenarios). These conditions can cause observations (e.g., range mea-

surements) that are non-representative of the target object (i.e., non-representative

outliers [16]) with heavy impact on the localization accuracy. These conditions can

be mitigated by using signals with large bandwidth, exploiting prior knowledge, and

selecting representative observations [83–89].

Previous works on selection techniques for sensor radars aim to improve local-

ization accuracy or to reduce signal processing complexity by choosing a subset of

active sensors. In [90], the subset of active antennas employed in the localization

process is minimized by selecting only those that fulfill the required performance.

In [91] and [92], a Kalman filter-based approach for global and local node selection is

proposed to increase geolocation accuracy in a distributed network of sensors. The

node selection relies on a combinatorial optimization framework and on the use of

the Cramèr-Rao bound (CRB), which requires prior knowledge of target position

and SNR for each transmitter-target-receiver link.

Sensor radars based on UWB signals [6, 93, 94] can provide accurate localization

in harsh propagation environments thanks to their ability to resolve multipath and

penetrate obstacles. Specifically, UWB signals provide fine delay resolution, which

enables precise TOA measurements for ranging [8, 22, 27, 29, 95–98]. However, the

accuracy and reliability of range-based localization typically degrade in wireless en-

vironments with multipath, clutter, LOS blockage, and excess propagation delays

47
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through materials [9, 12–14, 59, 99–101]. Sensor radars exploiting the characteristics

of UWB signals are presented in [33, 102–106, 108].

Ranging accuracy in sensor radars depends on the capability of exploiting prior

knowledge, noise filtering, clutter mitigation, and TOA estimation. A variety of

range error models have been adopted in the literature [81].

The fundamental questions for the design of target localization techniques via

sensor radars are: (i) What are the intrinsic properties of the radar network domi-

nating its performance in a given operation environment? (ii) How does the quality

of the measurements impact the localization accuracy? (iii) How to conceive the

network setting, waveform processing, and localization algorithm to mitigate prop-

agation impairments? The answers to these questions enable the design of sensor

radars exploiting the intrinsic properties of the network for a new level of localization

accuracy even in harsh propagation environments.

Our approach consists in exploiting diversity and selection of measurements to

enhance the performance of sensor radars in harsh propagation environments with

non-line-of-sight (NLOS) conditions. Diversity is a well known concept used in wire-

less communications to improve the performance, especially in fading channels (see,

e.g., [109–113]). The goal of this work is to provide insights into how the network

intrinsic properties, the waveform processing, and the localization algorithm affect

detection and localization capabilities of sensor radars, as well as to demonstrate that

proper techniques for selecting a subset of observations can improve the localization

accuracy despite the lower complexity.

Innovative techniques are presented, which are blind to both channel knowl-

edge and propagation environment for selecting representative observations. Such

blind techniques rely on indicators obtained from non-coherent reception and sub-

Nyquist sampling of waveforms. A methodology for the design and analysis of SRs

is developed by jointly considering network intrinsic properties and signal processing

techniques. The key contributions can be summarized as follows:

• introduction of blind techniques for the selection of representative observations

in sensor radars;

• development of a methodology for the design and analysis of sensor radars

by jointly considering (i) network setting, (ii) propagation environment, (iii)

waveform processing, (iv) observation selection, and (v) localization algorithm;

• quantification of the localization accuracy improvement provided by observa-
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Figure 4.1: Example of a sensor radar configuration with one transmitter at pn and

|S| − 1 receivers at p1,p2, ...,pn−1,pn+1,pn+2, ...,p|S|; the target is at p.

tion selection techniques.

The performance evaluation accounts for all the channel impairments such as

multipath, clutter, and LOS/NLOS propagation. To understand the key benefits

of selecting representative observations, we consider all the relevant aspects of the

sensor radar and the propagation environments, neglecting synchronization errors

and other secondary aspects that are beyond the scope of this study. Instead of

considering a specific range error model, we simulate the entire signal processing

chain starting from the received waveforms. As a case study, we consider UWB

sensor radars in a typical indoor environment (with LOS and NLOS conditions,

clutter, and multipath).

4.1 Sensor Radar Network

The network setting and the propagation environment for the analysis of sensor

radars is now described.

4.1.1 Network Setting

Refer to a network of sensors with index set S and cardinality |S|, where the sensor

indexed by s ∈ S is in position ps. The radar configuration is defined by an index

subset T ⊂ S of |T | transmitters and an index subset R ⊂ S of |R| receivers. The
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ith transmitter (i ∈ T ) and the jth receiver (j ∈ R) are at pi and pj, respectively.

Such a radar configuration defines an index set P of transmitter-receiver pairs with

cardinality |P| = |T | × |R|. Specifically, each pair (i, j) ∈ P is composed of the ith

transmitter emitting a signal and the jth receiver collecting the received signal after

backscattering by the target object and wireless propagation. Figure 4.1 shows an

example of sensor radar with P = {(n, 1), (n, 2), . . . , (n, n−1), (n, n+1), . . . , (n, |S|)}.

By processing the received signal for each pair, the TOA is estimated and the

transmitter-to-target-to-receiver distance (signal path-length) is determined.

For a target object in position p and a radar (i, j) ∈ P, the signal path-length is

given by

dij(p) = di(p) + dj(p) = τij(p) c (4.1)

where di(p) and dj(p) are the ith transmitter-to-target and target-to-jth receiver

distances, respectively, c is the speed of light, and τij(p) is the TOA at the jth

receiver for a signal emitted by the ith transmitter and backscattered by the target.

It is known that the target position p is given by the intersection of isorange contours

(the TOA estimates define circumference or ellipses in the monostatic and bistatic

case, respectively) [2]. In general, isorange contours have more points of intersection

leading to ambiguities in target location in non-ideal conditions.

The transmitter-receiver pair forms a monostatic or a bistatic radar whether

the transmitter and the receiver are co-located (pi = pj) or not (pi ̸= pj). Note

that bistatic pairs might require accurate phase and time synchronization between

transmitter and receiver [2]. In a bistatic radar, each single signal transmission

causes the reception of at least two signal replicas in free-space propagation: the

direct signal via the transmitted-to-receiver path and the reflected signal via the

transmitter-to-target-to-receiver path [114]. Thus, a temporal separation between

the two signal replicas is necessary to ensure their resolvability, which results in a

minimum resolvable delay for the radar. In a monostatic radar, the same antenna is

used for transmission and reception. Thus, a switching time between the transmission

and reception phases is present, which results in a blind range for the radar. In the

following, τmin denotes either the minimum resolvable delay and the blind range for

the bistatic or monostatic case, respectively [2].

The TOA τij(p) can be determined and the target detected by the radar (i, j) ∈ P

if

dij(p) ≥ d⋆ij (4.2)

where d⋆ij = ∥pi − pj∥ + τmin c. Then, the target position can be determined by
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a localization algorithm that processes the observation vector τ̂P(p) with elements

τ̂ij(p) representing the estimated TOA for all the radars (i, j) ∈ P.

The detection and localization capabilities of a SR depend on its intrinsic prop-

erties, the receiver sensitivity, and the received SNRs. Specifically, the received SNR

γij(p) for the radar (i, j) ∈ P and target at p is given by

γij(p) =
PR,ij(p)

fprN0

(4.3)

where PR,ij(p) is the received power referred to a pulse repetition frequency (PRF)

fpr and N0 is the one-sided PSD of the noise. Target detection and TOA estimation

benefit from gathering the energy of multiple backscattered signals. This gathering

occurs by processing received signals collected from the transmission of Np signals.

A minimum received SNR γ⋆must be guaranteed to fulfill detection requirements.

From (5.1), this requirement corresponds to a minimum received power P ⋆
R as

PR,ij(p) ≥ P ⋆
R . (4.4)

The locus of points satisfying the minimum SNR requirement, in a bidimensional

scenario with free-space propagation, corresponds to that inside a circumference

(namely maximum circumference) for monostatic radars, and that inside a Cassini

oval (namely maximum Cassini oval) for bistatic radars [114]. In NLOS conditions,

the area covered is irregular and depends on the obstructions of signal propagation.

4.1.2 Propagation Environment

The power received in a band [fL, fU] from the ith transmitter-to-target-to-jth re-

ceiver path is given by

PR,ij(p) =

∫ fU

fL

Rij(f,p) df (4.5)

where Rij(f,p) is the one-sided PSD of the received signal.

In free-space propagation (i.e., LOS conditions), the signal is attenuated due to

the path-loss. In obstructed propagation (i.e., NLOS conditions), in addition to the

path-loss the signal is also attenuated and time-delayed by obstructions depending

on the material characteristics such as the relative permittivity and attenuation

coefficient. The obstruction-loss Lij(f,p) accounts for such effects on the received

signal PSD. In a general case, the received signal PSD is affected by path-loss and
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Figure 4.2: Sensing and processing in SRs for localization based on observation

selection.

obstruction-loss as

Rij(f,p) =

◦

Rij(f,p)

Lij(f,p)
(4.6)

where
◦

Rij(f,p) is the received signal PSD in LOS conditions.

In the case of UWB signals, the path-loss is modeled according to the IEEE802.15.4a

standard [65]. In particular, the one-sided PSD of the signal received for the radar

(i, j) ∈ P and target at p in the absence of signal obstructions is given by

◦

Rij(f,p) =
Ti(f)ηi(f,Θi)ηj(f,Θj)Σ(f,Θi,Θj)

(4π)3(f0d0/c)2ℓ
β
ij(p)(f/f0)

2κ+2
(4.7)

where Ti(f) is the transmitted signal PSD that feeds the transmitting antenna;

d0 is the reference distance and f0 the center frequency; ηi(f,Θi) and ηj(f,Θj)

are the transmitting and receiving antenna efficiencies, respectively; Θi and Θj

are the solid angles between ith transmitter-target and target-jth receiver, respec-

tively; Σ(f,Θi,Θj) is the radar cross section (RCS) of the target; and ℓij(p) =

di(p)dj(p)/d0
2 . The path-loss exponents β and κ provide the path-loss dependence

on distance and frequency, respectively. In a typical indoor environment the presence

of walls determines an NLOS condition with obstruction-loss (in dB) given by [115]

10 log10 Lij(f,p) =

Wij(p)∑

w=1

n
(w)
ij (p)X(w)(f) (4.8)

where Wij(p) is the number of wall-types met by the signal (incident and scattered),

n
(w)
ij (p) is the number of walls of type w, and X(w)(f) is the frequency-dependent

loss induced by a wall of type w. Therefore, the total loss is the sum of path-loss

and obstruction-loss located along the propagation paths. Note that Lij(f,p) = 1

in free-space propagation.

Together with the obstruction-loss, the presence of obstacles and walls obstructing

the signal path results in an excess delay for the TOA, which causes a positive bias on
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the TOA estimate. For example, a set of measurements was performed to characterize

the excess delay on UWB signals due to the presence of concrete walls in a typical

office building [13], showing that the TOA estimate bias is βij(p) ≃ ∆/c, where ∆

is the total thickness of the wall.

The accuracy of target location inference relies on the quality of TOA estimates

composing the observation vector τ̂P(p), which depends on the intrinsic properties of

the sensor radar. The processing of signals received in LOS conditions might result

in imperfect TOA estimation τ̂ij(p), therefore in an imperfect signal path-length

estimation d̂ij(p) = τ̂ij(p) c, due to non-ideal propagation (e.g., multipath, clutter,

noise). The processing of signals received in NLOS conditions might result in an

inaccurate TOA estimates due to excess delay and obstruction-loss. Therefore, in

NLOS conditions the TOA estimates are more likely non-representative observations

of the target. Hence, given an observation vector obtained from diverse radars in

the network, the localization accuracy can be enhanced by processing a subset of

representative observations of the target. Section 4.3 will present the processing

techniques for the selection of representative observations in sensor radars.

4.2 Observation Selection Methods

Blind and low-complexity techniques are now proposed, which exploit diversity and

provide selection of observations to alleviate harsh propagation impairments and

improve localization performance.

Figure 4.2 shows the block scheme for target localization starting from the set

of received signals vP(t) = {vij(t) : (i, j) ∈ P}. For each signal after pre-filtering

and clutter removal rij(t), a feature h(rij) is extracted. Then, a subset of cardinality

L ≤ Nobs of vectors rPsel
(t) is selected based on such a feature. The TOA estimator

at each receiver determines τ̂ij for the signal rij(t) if selected, i.e., (i, j) ∈ Psel.

The choice of the feature is crucial for the sensor radar’s ability to select ob-

servations that are representative for target location inference. Therefore, such a

choice has to be based on the relation between the feature h(rij) and the range error

eij = c |τ̂ij(p)− τij(p)|. Consider a decision vector εij = [ε
(0)
ij , ε

(1)
ij , . . . , ε

(Nb−1)
ij ] of Nb

signal indicator samples for the pair (i, j) ∈ P (e.g., with an energy detector the ε
(q)
ij

is related to the energy of samples within the qth time interval) then h(rij) = h(εij).

Since the range error depends on the true TOA, the ideal selection would be based

on the centrality of ε
(q)
ij distribution with respect to τij(p). Unfortunately, the true
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TOA is not known in a blind context. Different features are now considered and

are related to the amplitude and temporal distribution of the decision vector εij for

selecting the observations that are most likely representative of the target (i.e., less

affected by multipath, noise, and obstruction-loss).

To evaluate the temporal dispersion of εij over the observation time, first nor-

malize its elements, within each decision vector, as

fij(q) =
ε
(q)
ij∑Nb

q=1 ε
(q)
ij

(4.9)

where fij(q) represents the sampling probability that the true TOA belongs to the

qth time interval given the vector εij . Note that, in the absence of prior knowledge,

we consider the true TOA included in the maximum element of εij with highest

probability. Define the cumulative distribution function, the first moment, and the

nth central moment of fij(q), respectively, as

Fij(x) =
∑

q≤x

fij(q) (4.10)

µij =

Nb∑

q=1

q fij(q) (4.11)

µ
(n)
ij =

Nb∑

q=1

(q − µij)
n fij(q) . (4.12)

From (4.10), (4.11), and (4.12), the temporal dispersion of the signal indicator sam-

ples can be evaluated by considering variance σ2
ij , interquartile range IQRij , kurtosis

κij , and skewness χij , which are respectively given by

σ2
ij = µ

(2)
ij (4.13)

IQRij = F−1
ij (0.75)− F−1

ij (0.25) (4.14)

κij =
µ
(4)
ij(

µ
(2)
ij

)2 (4.15)

χij =
µ
(3)
ij(√
µ
(2)
ij

)3 . (4.16)

To evaluate the amplitude dispersion of εij , consider the maximum value Mij, sample

variance s2ij , sample range rij , and sample skewness cij , which are respectively given
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by

Mij = max
q

ε
(q)
ij (4.17)

s2ij =
1

Nb

Nb∑

q=1

[
ε
(q)
ij −

(
1

Nb

Nb∑

q=1

ε
(q)
ij

)]2

(4.18)

rij =

∣∣∣∣max
q

ε
(q)
ij −min

q
ε
(q)
ij

∣∣∣∣ (4.19)

cij =

∑Nb

q=1

[
ε
(q)
ij − 1

Nb

(∑Nb

q=1 ε
(q)
ij

)]3

Nb

(
s2ij

)3/2 . (4.20)

The relation between a feature h(εij) ∈
{
σ2
ij , IQRij, κij ,χij, s

2
ij ,Mij, rij , cij

}
and

the range error eij can be evaluated through the correlation ρ(h(εij), eij). Such cor-

relation is determined via both the Spearman and the Pearson correlation coefficients,

which indicates whether a monotone relation between the two variables exists [116].

Specifically, the Pearson correlation coefficient for N observations of two variables x

and y is given by

ρ(x, y) =

∑N
i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2(yi − y)2

(4.21)

where xi and yi, with i = 1, ..., N , are observations of x and y, respectively; and

x and y are the average values of the observation sample {xi}Ni=1 and {yi}Ni=1, re-

spectively. The Spearman correlation coefficient is determined similarly to (4.21) by

using the ranked variables in place of the original ones. Ranking is performed by sort-

ing the observations in ascending order and associating them to the corresponding

ordinal number. Both correlation coefficients take values in [−1, 1], where the value

ρ(h(εij), eij) = 0 indicates that the two variables are uncorrelated, whereas positive

or negative values indicate that any monotone relation between the two variables

is non-decreasing or non-increasing, respectively. The statistical significance of such

correlation coefficients can be tested based on the sample size and the resulting cor-

relation values providing a p-value, where p represents the probability of obtaining

the same correlation coefficient with two independent variables [117].

Consider for example the cases h(εij) = σ2
ij , h(εij) = χij , and h(εij) = cij .

Specifically, low or high values of the variance σ2
ij are obtained with narrow or wide

sampling distribution of the time interval containing the true TOA, respectively.
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Therefore, lower values of σ2
ij are expected for large values of SNR corresponding

to smaller range errors. Differently, positive or negative values of skewness χij are

obtained when the sampling distribution is right-side or left-side tailed, respectively.

In particular, positive values are due to the shape of the channel impulse response,

whose right-side tail is given by the delay spread of the channel. The channel impulse

response guides the shape of fij(q) for large SNR values, while it has a lower impact

for small SNR values. Therefore, higher values of χij are expected for smaller range

errors. Finally, low or high values of sample skewness are obtained when there are

many or few elements with large values within the decision vector εij , respectively.

Large-value indicator samples are more likely to be associated with the target for

large SNR values, when the energy due to the target is easily discernible from the

noise floor. Therefore, higher values of cij are expected for smaller range errors.

The observations τ̂P(p) are sorted based on the features h(εP) in increasing

or decreasing order, depending on whether the relation between h(εij) and eij is

monotonically non-increasing or non-decreasing, respectively. The features h(εP)

are calculated based on the vector εP , that contains all the decision vectors εij with

(i, j) ∈ P. Then, the subset τ̂Psel
(p) of L = |Psel| ≤ Nobs selected observations is

composed by the first L sorted observations and further processed by the localization

algorithm.

From (2.18), the comparison between the computational complexity of local-

ization with and without observation selection depends on the complexity of the

localization algorithm Cl(N). Note that the term Cf(Nmeas) is a linear function with

the number of observations O(Nmeas) for all the aforementioned features, except for

the IQRij that requires function inversion. Therefore, the selection of representative

observations enables significant savings in complexity when m ≥ 2.

The extraction of the aforementioned features will be detailed in the following

for a case of wide usage based on sub-Nyquist processing with energy detection.

4.3 Observation Processing

The signal pre-processing techniques and TOA estimation is now described.

4.3.1 Pre-filtering and Clutter Removal

The out-of-band noise can be mitigated by means of a band-pass zonal filter (BPZF),

which consists of a band-pass filter having the same center frequency and bandwidth
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of the transmitted signal. The output of the BPZF, corresponding to the transmis-

sion of Np pulses, is given by

ṽij(t) =

Np−1∑

p=0

Lp∑

l=1

α
(l)
ij s(t− p Tg − τ

(l)
ij ) + wij(t) (4.22)

where s(t) is the output of the BPZF corresponding to a single pulse at its input, Lp

is the number of received multipath components due to target backscattering (with

lth component having gain α
(l)
ij and delay τ

(l)
ij ), and Tg ! 1/fpr. The term wij(t)

includes the filtered components of noise and clutter.

There are various techniques for clutter removal, based on the operation environ-

ment. In case of static clutter, two classical techniques are the empty-room technique

and the frame-to-frame technique. The empty-room technique consists in a setup

phase where a signal, namely reference signal, is received and recorded at each radar

in the absence of target object [118]. Such a reference signal is recorded off-line from

a high number of transmitted pulses, therefore including the time-invariant clutter.

Then, the reference signal is subtracted from the signal received in the presence of

target objects to mitigate static clutter. The frame-to-frame technique exploits the

amplitude and phase variations of backscattered signals due to the target mobility

for discerning the time-invariant clutter from the moving target [104]. In the case of

non-static clutter, both clutter removal techniques present a residual clutter in the

waveforms at the input of the TOA estimator.

4.3.2 Time-of-Arrival and Position Estimation

A variety of TOA estimators is present in the literature; those based on energy

detection received attention because they are based on non-coherent signal reception

and sub-Nyquist sampling. In particular, with energy detection the TOA estimates

are determined based on energy values collected in time intervals (energy bins) [29].

The signal at the input of the TOA estimator, after pre-filtering and clutter

removal, is given by

rij(t) =

Np−1∑

p=0

Lp∑

l=1

α
(l)
ij s(t− p Tg − τ

(l)
ij ) + nij(t) (4.23)

where nij(t) includes the filtered noise and the residual clutter.
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After perfect clutter removal, multipath propagation in (5.2) accounts for the

paths scattered by the target, and these paths arrive at the receiver after reflec-

tions. In the absence of prior information, we consider the true τij(p) uniformly

distributed in the interval [0, Ta], where the maximum possible delay Ta depends on

the propagation environment. The PRF is chosen to satisfy Tg > Ta.

A decision vector based on energy bins is obtained as εij = [ε
(0)
ij , ε

(1)
ij , . . . , ε

(Nb−1)
ij ],

where the qth element ε
(q)
ij is determined, for example, by averaging over the Np

received signals [29] as described in 3.1.1. In particular, an hard-decision TCS algo-

rithm is considered. For the radar (i, j) ∈ P and target at p, the estimated TOA

τ̂ij(p) is chosen as the central value of the corresponding dwell interval for the first

element of the energy vector above the threshold ξij.

The amplitude and temporal distributions of the elements ε
(q)
ij depend on the

true TOA τij(p) and the received SNR γij(p), which are affected by propagation

conditions (i.e., noise, path-loss, obstruction-loss). Figure 4.3 shows three examples

of energy vectors ε
(q)
ij as a function of q for different signal path-lengths and total

thickness of the crossed walls. Note that the true TOA τij(p), which is dependent

on both signal path-length and obstructions, guides the centrality of distribution of

ε
(q)
ij , while the SNR, which is dependent on path-loss and obstruction-loss, guides the

amplitude and temporal dispersion of ε
(q)
ij . Decisions provided by comparison with a

threshold in the case of disperse distribution of energy bins are more vulnerable to

non-representative elements of the observation vector. Hence, τ̂ij(p) is most likely

due to a non-representative observation of the target when the values ε
(q)
ij have a flat

distribution with values close to the noise floor.

4.4 Case Study

A case study for a network of UWB sensor radars is presented, which operates in

an indoor environment and that exploits the selection of representative observations.

The operation environment, the signal processing techniques, and the numerical

results are described in the following subsections.
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Figure 4.3: Energy vectors for different values of signal path-length dij(p) and total

wall thickness ∆. Energy values are normalized to the maximum of the vector in (a).

Results are obtained with an ED setting and channel model used in the case study.

4.4.1 Operation Environment

Scenario

Figure 4.4 shows the operation environment of 10m × 10m with walls, in which

NS = |S| = 12 UWB sensors are placed. Results are compared to those obtained
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Figure 4.4: Operation environment with sensor radars and walls. Sensor position

coordinates are: p1 = (1, 2), p2 = (0.5, 5), p3 = (2, 8), p4 = (3, 3), p5 = (6, 6),

p6 = (7, 3.5), p7 = (9.2, 4), p8 = (9.5, 8), p9 = (8, 8), p10 = (3, 6.5), p11 = (5, 8.5),

p12 = (8, 1.8), in meters.

in the absence of walls. In the operation environment, the maximum TOA value

is Ta = 94.2 ns (corresponding to the TOA of a signal traveling over a distance of

twice a diagonal line). The network of sensor radars varies its configuration during

the localization process. Specifically, we consider NS − 1 multistatic configurations

with a single transmitter and multiple receivers. At the nth configuration, there is

one transmitter at pn and the NS − n receivers in positions {pn+1,pn+2, ...,pNS
}.

In reciprocal channels, the choice of these multistatic configurations ensures diverse

propagation paths for received signals rij(t) with a single observation per sensor

pair. The total number of observations is Nmeas = NS(NS − 1)/2 (i.e., Nmeas = 66

for NS = 12).

The impulse radio UWB sensor radars transmit a sequence of root raised cosine

(RRC) pulses compliant with the European lower band with PRF = 5MHz. The

antennas are omnidirectional and the one-sided noise power spectral density is N0 =

−200 dBW/Hz (e.g., noise figure F = 6dB and antenna noise temperature 290K).



4.4. Case Study 61

Multipath and clutter

Multipath propagation for the direct signal (from transmitter to target) and backscat-

tered signal (from target to receiver) are modeled according to IEEE 802.15.4a [119]

for a residential LOS environment. The NLOS conditions caused by walls generate

obstruction-loss and excess delay, which are taken into account as described in Sec-

tion 4.1.2. For each TOA estimation, the presence of 100 clutter objects uniformly

distributed in the operation environment is considered. Such clutter is static, with

RCS for each object obtained as a realization of a Swerling type-V RCS (i.e., a

Chi-squared RV with four degrees of freedom).

Target

A Swerling type-III RCS Σ is considered for the target, which models a human body

with random RCS distributed as a Chi-squared RV with four degrees of freedom,

constant during a scan (i.e., the transmission of Np pulses necessary for the TOA

estimation process) and independent from scan to scan [2]. The average RCS is

E{Σ} = 1m2, which is typical for the human body [120].

4.4.2 Signal processing and Localization Algorithm

The energy vector εij for each radar (i, j) ∈ Psel is obtained via an ED with dwell

time Tdwell = 2ns and observation time Tg = 200 ns. Then, a TOA estimate τ̂ij(p)

is determined through comparison with a threshold ξij , which is chosen to obtain a

constant probability of the event that an only-noise energy bin is above the threshold.

Therefore, P {ε > ξij} = 10−3 when ε is an only-noise bin (e.g., corresponding to an

absence of the target). The static clutter is mitigated via an empty-room algorithm

with reference signal obtained by averaging 100 received waveforms in an absence of

the target [104].

The performance of the SR is evaluated when L observations are selected based

on the eight different features presented in Section 4.3, i.e.,

h(εij) ∈
{
σ2
ij , IQRij, κij ,χij, s

2
ij ,Mij, rij , cij

}
(4.24)

for (i, j) ∈ Psel. To evaluate the benefits offered by selecting representative obser-

vations using the proposed features, a case in which L observations are randomly

chosen is also presented for comparison. In addition, a non-blind case is presented as
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a benchmark where the L energy vectors are chosen as those leading to the minimum

range errors by using

h(εij) = eij = c |τ̂ij(p)− τij(p)| (4.25)

There, localization is performed based on the selected observations for 1000 target

positions uniformly distributed in the environment of Figure 4.4 with and without

walls.

4.4.3 Numerical Results

The results related to the choice of observation selection features and to the local-

ization accuracy are now presented.

Observation selection features

Figures 4.5 and 4.6 show the variance σij and kurtosis κij, respectively, for two

bistatic radars in the network (transmitter indexed by i = 6 and receiver indexed

by j = 10 or 12). One thousand target positions uniformly distributed in the envi-

ronment with walls are considered. It can be observed how the feature varies with

the signal propagation conditions (i.e., target in LOS or NLOS conditions with both

transmitter and receiver). In particular, Figure 4.5 shows that high values of vari-

ance σij are obtained when the target is in LOS conditions with both transmitter

and receiver (i.e., Figure 4.5(b)) or in light NLOS conditions (i.e., Figure 4.5(a)).

NLOS conditions are referred to as light or heavy when one or more walls are present

in the signal propagation path, respectively. Figure 4.6 shows that high values of

kurtosis can be obtained not only in LOS and light NLOS conditions, but also in

heavy NLOS conditions (e.g., for targets in the bottom right corner of the envi-

ronment). These results indicate that using the variance as feature enables a more

accurate selection of representative observations than using the kurtosis. Therefore,

we expect a correlation |ρ(σij , eij)| higher than |ρ(κij , eij)|.

To understand the ability of the features proposed in Section 4.2 to indicate

representative observations, Figure 4.7 shows the Spearman and Pearson correlation

between each feature h(εij) and the range error eij . The non-blind case with h(εij) =

eij used as a benchmark is also presented. Correlation is obtained by considering

a data set of 1000 × Nmeas energy vectors (i.e., one energy vector per transmitter-

receiver pair, for each of the 1000 uniformly distributed target positions). The p-value
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(a) Sensor radar (p6,p10).
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(b) Sensor radar (p6,p12).

Figure 4.5: Color map of variance σ2
ij with i = 6 and j = 10, 12, for 1000 target

positions uniformly distributed in the environment. The value of σ2
ij is normalized

to the maximum value in the environment.

is lower than 10−5 for all the features according to both Spearman and Pearson’s

correlations, which indicates that the correlation is statistically significant [117].

Specifically, low or high values of |ρ(h(εij), eij)| indicate a weak or strong capability
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(b) Sensor radar (p6,p12).

Figure 4.6: Color map of kurtosis κ2
ij with i = 6 and j = 10, 12, for 1000 target

positions uniformly distributed in the environment. The value of κ2
ij is normalized

to the maximum value in the environment.

of selecting representative observations using the feature h(εij), respectively. The

positive or negative sign of ρ(h(εij), eij) indicates that the lower values of h(εij) are

most likely to provide smaller or larger range errors, respectively. Therefore, the
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Figure 4.7: Pearson and Spearman correlation coefficients between each considered

feature and the range error. Green and red regions represent index values of either

strong or weak correlation, respectively. The red line represent the case of uncorre-

lation between the two variables.

subset of representative observations leading to the lower or higher values of h(εij)

is selected if the sign of ρ(h(εij), eij) is positive or negative, respectively. Note that

the correlation for the feature h(εij) = σ2
ij is 0.38 with Pearson’s method and 0.44

with Spearman’s method; the correlation for the feature h(εij) = χij is −0.71 with

Pearson’s method and −0.64 with Spearman’s method; and the correlation for the

feature h(εij) = cij is −0.71 with Pearson’s method and −0.90 with Spearman’s

method. Therefore, the selection of representative observations leading to the lower

variance, the higher skewness, or high sample skewness most likely provides small

range errors.

Based on these results we evaluate the effects of observation selection on the local-

ization performance for these three features, which present large values of correlation

together with linear computational complexity.

Localization performance

Figure 4.8 shows the LEO at eth = 1m as a function of the number of selected

observations L for h(εij) = σ2
ij , κij, and Mij. To better understand the importance

of the observation selection features on localization accuracy, the results are also

obtained by considering a random selection of the L observations. The non-blind

case h(εij) = eij serves as a benchmark. In the absence of walls (LOS conditions),

all selection features provide a LEO that decreases with the number of selected

observations. This is expected from the absence of obstruction-loss and excess delay.
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Figure 4.8: LEO as a function of L = 1, 2, ..., Nmeas for eth = 1m, with (solid)

and without (dashed) walls, for the cases (A) h(εij) = σ2
ij , (B) h(εij) = κij , and

(C) h(εij) = Mij. The case (D) represents the random choice of L observations. The

case (E) refers to the non-blind case h(εij) = eij.

However, note that L = 5 observations, even randomly chosen, are sufficient to have

a localization error ep(p) < 1m in 80% of cases despite only L = 5 TOA estimates

out of 66 are processed. This significantly reduces localization complexity, which

is a quadratic function of the number of estimates that are processed. The worse

performance levels for L < 5 are mainly due to ambiguities (e.g., ghost targets [2])

given by the intersection of L isorange contours (ellipses in two dimensions) leading

to more than a single point in the absence of prior information (e.g., information on

the environment). In the presence of walls (NLOS conditions) the LEO presents a

minimum for all the selection features with L = 5 or 6. Here, the effect of selection is

clear since in the case with L = 5 the localization error is ep(p) < 1m in 20% of cases

for random observation choice and in 77%, 80%, and 76% of cases for h(εij) = σ2
ij ,χij,

and cij , respectively. Note also that the localization error is ep(p) < 1m in only 7%

of cases when no selection is performed (i.e., all the L = Nmeas = 66 observations

are processed). Therefore, the performance improvement offered by the proposed

method for this selection of representative observations is remarkable.

Figure 4.9 shows the LEO as a function of eth for L = 5 selected observations us-

ing the features considered in Figure 4.8. In the absence of walls (Figure 4.9(a)), the
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localization error in 80% of cases is below 0.08m for the non-blind case h(εij) = eij ,

0.98m for h(εij) = σ2
ij , 0.72m for h(εij) = χij, 0.74m for h(εij) = cij , and 0.84m

for the random observation selection. Note that, the random choice shows similar

performance to the other selection techniques in the absence of obstructions. This

is due to the fact that range measurements almost have the same representative-

ness in the absence of obstruction-loss and excess delay. In the presence of walls

(Figure 4.9(b)), the localization error in 80% of cases is below 0.42m for the non-

blind case h(εij) = eij , 1.1m for h(εij) = σ2
ij , 0.96m for h(εij) = kij , and 1m for

h(εij) = cij . Note that the localization error is above 3m in 49% of cases when the

subset of observations is randomly selected. This highlights that, together with com-

plexity reduction, the processing of a small subset of properly selected representative

observations significantly improves the localization performance. It is remarkable

that proper observation selection can provide localization performance close to that

in the absence of walls.
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Figure 4.9: LEO as a function of eth, with L = 5 and Nmeas = 66, for the cases

(A) h(εij) = σ2
ij , (B) h(εij) = κij , (C) h(εij) = Mij. The case (D) represents the

random choice of L observations. The case (E) refers to the non-blind cases, where

h(εij) = e2ij .



Chapter 5

Passive Tracking

5.1 Tracking with Sensor Radar Networks

Tracking of moving targets (objects, persons, and vehicles) enables several applica-

tions in military, security, and safety sectors. While active tracking relies on targets

that emit signals, passive tracking via SRs relies on a network of sensors that emit

radar signals and receive them after backscattering from the target [5, 61, 121]. The

inference of target position, which is based on the joint processing of received wave-

forms and prior knowledge, is particularly challenging in indoor environments, where

multipath, clutter, and NLOS conditions affect the received waveforms.

The literature considers SRs to be a low-power and low-complexity solution for

accurate detection and tracking of moving targets. Recently, UWB SRs have gained

interest owing to their ability to resolve multipaths and penetrate obstacles [9,22,93].

It has been shown that UWB SRs can provide submeter tracking accuracy even in

harsh indoor environments [32, 118, 122].

The fundamental question related to passive tracking via SRs under complexity

constraints is the following: how to design the network (e.g., sensor positions and

radar configurations) and to allocate the processing (e.g., ranging and tracking) re-

sources for different tasks? The answers to this question will provide insights into

the efficient design of high accuracy SRs. The goal of this letter is to illustrate the

SR performance improvement that can be obtained by properly designing the radar

network and allocating the processing resources. Previous works on SRs separately

investigated the following aspects: sensor positions [123], wireless propagation [124],

ranging techniques [29], and tracking algorithms [15]. Our view is that the joint de-

sign of radar network, waveform processing, and tracking algorithm can significantly

69
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Figure 5.1: An example of SR deployment (red circles) and of a target trajectory

(solid blue line). The blue dots indicate target positions at time indexes k and j.

Continuous green and dashed brown arrows exemplify a transmitter-target-receiver

radar signal for monostatic and multistatic configuration, respectively.

improve the SR performance.

This letter explores SRs by considering network configuration, propagation im-

pairments, as well as ranging and tracking techniques. A case study in indoor en-

vironments is provided (with obstructions, clutter, and multipath) and the perfor-

mance (tracking error and outage) of monostatic and multistatic UWB SRs for dif-

ferent settings is quantified. The case study provides insights into the joint design

of networking and processing for SRs operating in challenging environments.

5.1.1 Networking and Propagation

Consider an SR (see e.g., Figure 5.1) composed of Ns sensors, of which Nt serve as

transmitters and Nr serve as receivers.1 The radar configuration is monostatic or

multistatic depending on whether transmitters and receivers are co-located or not.

The radar configuration determines the index set P of transmitter-receiver pairs,

1 The discrimination among different transmitted UWB signals can be performed by timehopping

(TH) and/or direct-sequence (DS) codes [93].
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where each (i, j) ∈ P denotes the ith transmitter emitting radar signals and the jth

receiver collecting them after backscattering from the target. For a target position

p ∈ R
d at time k, the signal path-length is given by dij(p), which is the distance

from the ith transmitter to the target to the jth receiver. The range estimate results

in d̂ij(p) = τ̂ijp c, where c is the speed of light and τ̂ijp is the estimated TOA of

a backscattered signal, at the jth receiver, emitted by the ith transmitter [2]. The

delay τmin is the minimum resolvable delay for the multistatic case and as the blind

temporal range for the monostatic case.2

The accuracy of TOA estimation depends on radar signal propagation, which is

affected by multipath, clutter, and obstructions. Specifically, when the target is at

p, the received SNR is given by

γij(p) = PR,ij(p) Tg/N0 (5.1)

where PR,ij(p) is the received power per pulse, Tg is the pulse repetition period

(PRP), and N0 is the one-sided PSD of the noise. The TOA can be estimated if

the received SNR is above a value γ⋆, which corresponds to the minimum required

received power per pulse P ⋆
R.

3

For UWB signals propagating in indoor environments, we determine the received

power as in [122] and model the obstruction-loss accounting for the number and

the type (i.e., electromagnetic characteristics) of obstructions in the transmitter-

to-target-to-receiver path, as in [115]. Note that the presence of objects and walls

obstructing the signal path also causes an excess delay in the TOA estimates. These

effects are quantified based on experimentations performed in a typical building [13].

In particular, the walls cause a positive bias µij(p) ≃ ∆/c on the TOA estimate,

where ∆ is the aggregate thickness of the walls.

5.1.2 Signal Processing

The signal processing to infer target positions is now described. First, received radar

waveforms are processed to determine transmitter-target-receiver distances based

on TOA estimation. Then, such radar ranging information is used to infer target

positions based on the tracking algorithm.

2The τmin is determined by the relative delay between the backscattered signal and the direct

signal for multistatic configuration, and by the switching time between transmitting and receiving

modes for monostatic configuration.
3The target in p is considered as detected if ∃(i, j) ∈ P s.t. PR,ij(p) > P ⋆

R (i.e., at least one

TOA estimation can be performed).
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Figure 5.2: TEO for eth = 1m, Td = 2ns, and varying number of sensors per room

ns. The processing configurations A, B, C, D are considered for monostatic (uniform

pattern) and multistatic (dashed pattern) networking.

5.1.3 TOA Estimation

The TOA estimation based on an ED is now considered, which is amenable to effi-

cient low-complexity implementation for UWB ranging [29]. Before energy detection,

received waveforms are processed by a band-pass filter and clutter mitigation tech-

niques. The signal at the input of the ED is

vij(t) =

Np−1∑

p=0

Lp∑

l=1

α
(l)
ij s(t− p Tg − τ

(l)
ij ) + nij(t) (5.2)

where Np is the number of transmitted pulses, Lp is the number of multipath compo-

nents (with amplitude α
(l)
ij and delay τ

(l)
ij for the lth component), s(t) is the filtered

pulse shape, and nij(t) is the filtered noise. The TOA to be estimated is that of the

first path (i.e., τij(p) = τ
(1)
ij ).4 Target detection and TOA estimation are performed

by collecting Nbin = ⌊Tg/Td⌋ energy bins, where Td is the dwell time, as described

in 3.1.1.5 Then, the decision vector εij =
(
ε
(0)
ij , ε

(1)
ij , . . . , ε

(Nbin−1)
ij

)
is obtained by av-

eraging each energy bin over the Np transmitted pulses. Each ε
(q)
ij is then compared

with a threshold ξij , and the first crossing event provides the TOA estimate [29,98].

5.1.4 Tracking Algorithm

The tracking algorithm infers the target position pk at each time index k (i.e., the

current state vector) from a set of TOA estimates (i.e., observations), a mobility

4The value τ
(1)
ij is in the range [τmin, Ta], where Ta is the greatest possible TOA value in the

environment and Tg is chosen such that Tg > Ta.
5The notation ⌊x⌋ denotes the largest integer not greater than x.
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model (i.e., relation between the current and the prior state vectors), and a percep-

tion model (i.e., relation between the observations and the current state vector [5].

Following a Bayesian approach, the position estimate p̂k is determined as the value

that maximizes the positional belief b(pk) = p(pk|τ̂Psel
(p1:k)), which is the posterior

distribution of the state vector, conditioned on a subset of observations τ̂Psel
(p1:k)

with Psel ⊆ P, i.e. p̂k = argmaxpk
b(pk) .

6 In particular, the positional belief is

b(pk) ∝ p (τ̂Psel
(p1:k)|pk)× p (pk|τ̂Psel

(p1:k−1)) (5.3)

where the first term is the perception model and

p (pk|τ̂Psel
(p1:k−1)) =

∫
p(pk|pk−1) p (pk−1|τ̂Psel

(p1:k−1)) (5.4)

marginalizes the mobility model p(pk|pk−1) with respect to pk−1. The subset of

selected observations Psel is chosen based on a selection criterion [125]. Specifically,

in the case study we select the |Psel| = 3 observations that provided the maximum

received power, i.e., min{PR,Psel
} ≥ max{PR,P\Psel

}.

Among the common implementations of Bayesian algorithms presented in2.3,

we consider the PF algorithm, which can outperform EKF in non-Gaussian noisy

observations [15].7 In particular, the positional belief at time k is represented by

a set of Npar random samples (particles) at {p(n)
k }, with n = 1, 2, ..., Npar. The

mobility and perception models are used to predict, update, and resample the po-

sitional belief at each k. In particular, a Gaussian mobility model is given by

p
(n)
k |p(n)

k−1 ∼ N (µ
(n)
k , σ2

m,k I), where I is the identity matrix and σ2
m,k depends on

the target mobility.8 The mean µ̂
(n)
k is determined based on previous position es-

timates as µ̂
(n)
k = p

(n)
k−1 + v̂k TL, where v̂k is the average speed calculated over Nw

previous positions, and TL is the time between two position estimations. A percep-

tion model for particles with independent and gaussian-distributed observations, is

considered with variance σ2
p,k depending on ranging and propagation.

5.1.5 Case Study

The operating environment is now described and the performance of monostatic and

multistatic SRs is evaluated.

6τ̂Psel
(p1:k) ! {τ̂ij(ph) s.t. (i, j) ∈ Psel, h = 1, 2, ..., k} .

7 Note that, in general, the observations follow a non-Gaussian distribution due to multipath

and clutter residual.
8N (µ,σ2) denotes the d-dimensional Gaussian distribution with mean µ and variance σ2.
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Operating Environment

A SRs is considered, with UWB impulse radios deployed in the operating environ-

ment shown in Figure 5.1 with wall thickness of 15 cm. In the monostatic configura-

tion, each sensor transmits and receives (Nt = Ns). In the multistatic configuration,

one sensor per room transmits (Nt = 5); specifically, the sensor closest to p̂k−1

transmits at time k > 1 (random at k = 1). The target speed is |v| = 1m/s along

10 trajectories with TL = 0.5 s. The performance for Ns = 5, 10, ..., 25 sensors is

evaluated (i.e., ns = 1, 2, ..., 5 sensors per room, respectively).9

Transmitters emit a sequence of RRC pulses with Tg = 200 ns and transmit-

ted PSD compliant with the European lower band. The transmitted PSDs for the

monostatic and multistatic configurations are set to have the same total transmit-

ted power. The minimum received power and the noise power spectral density are

P ⋆
R = −110 dBm and N0 = −200 dBW/Hz, respectively. The channel impulse re-

sponse is modeled with Lp = 20 paths spaced by δp = 4ns, exponential power delay

profile with decay constant ε = 20 ns, and Nakagami-2 distributed path amplitudes.

The target RCS is Swerling type III distributed with mean 1m2 (typical for the hu-

man body) [2]. The ED-based TOA estimates τ̂P(p) are obtained with Td = 1, 2, 4 ns

and Np = 32, 128. A best-case analysis for ED-based ranging is provided by consid-

ering the threshold ξij that minimizes the RMSE of TOA estimates for each received

SNR value.

Static clutter is generated using 100 scatterers for each transmitter-receiver pair,

with uniformly distributed TOAs and a Swerling type V distributed RCS with

mean 1m2. The empty-room technique is employed for clutter mitigation [104].

Specifically, a reference waveform is subtracted from the received waveform for each

transmitter-receiver pair. This reference waveform is obtained by averaging 100 re-

ceived waveforms in the absence of target. The tracking algorithm is based on PF

with Npar = 100 and 1000, σ2
p,k = 1 for all k, and Nw = 2. The value of σ2

m,k is

chosen such that the nth estimated particle at time k is within a circle centered at

µ̂
(n)
k of radius |v̂k| TL with probability 0.9. When the selection of observations is

performed, the set τ̂Psel
includes three observations |Psel| = 3 corresponding to the

signals received with the highest power; otherwise it includes all the available TOA

estimates |Psel| = |P|.

9The ns sensors are deployed on a circle inscribed in each room, equally spaced from each other,

and with initial angle π/6.
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Performance Evaluation

The tracking performance is quantified in the indoor environment shown in Fig-

ure 5.1 by simulating several configurations of the network and varying the setting

of signal processing.10 Specifically, we determine the effects of (i) network topology

by employing monostatic and multistatic SR with ns = 2, 3, 4, and 5 sensors; (ii)

TOA estimation by collecting Npulse = 32 and 128 pulses for energy detection with

Td = 1, 2, and 4 ns; (iii) tracking algorithm by sampling with Npar = 100 and 1000

particles; and (iv) selection of observations by considering all the available observa-

tions or a subset of them. Four processing settings are considered: (A) Npulse = 32,

Npar = 100, and |Psel| = |P|; (B) Npulse = 32, Npar = 100, and |Psel| = 3; (C)

Npulse = 32, Npar = 1000, and |Psel| = |P|; and (D) Npulse = 128, Npar = 100, and

|Psel| = |P|. Note that cases B, C, and D differ from A for the values of |Psel|, Npar,

and Npulse, respectively. Tracking performance is evaluated in terms of tracking error,

i.e., the Euclidean distance between the estimated and the true position, tracking

RMSE, and tracking error outage (TEO), i.e., the probability that tracking error is

above a given value eth.
11

Figure 5.2 shows the TEO for monostatic and multistatic configurations with

eth = 1m, Td = 2ns, and different ns values. It can be seen that, in each setting,

the TEO tends to decrease as ns increases, with negligible improvement for ns > 3.

Moreover, the multistatic configuration is more sensitive to the number of sensors

per room. For example in setting A, varying ns from 1 to 5 reduces the TEO from

0.31 to 0.20 with the monostatic SR, whereas it reduces the TEO from 0.64 to 0.20

with the multistatic SR. In the setting D, the TEO reduces from 0.21 to 0.02 for the

monostatic SR and from 0.52 to 0.03 for the multistatic SR. Figure 5.2 also shows

that multistatic SR experiences a higher TEO than monostatic SR at low values of

ns because the number of LOS conditions is smaller for the former than the latter.

Figure 6.6 shows the TEO as a function of eth for Td = 2ns with Ns = 20. It

can be seen that TEO benefits more from a larger number of pulses collected for

ranging than from a larger number of particles used for tracking. For eth = 0.5m,

varying the processing from setting A to C or D changes the TEO from 0.57 to 0.51

or 0.14 with the monostatic SR and from 0.49 to 0.36 or 0.12 with the multistatic,

respectively. Moreover, especially for monostatic SR, results obtained with |Psel| = 3

10The main impairments affecting SR performance are taken into account, even though additional

phenomena might occur in real scenarios.
11The TEO is evaluated over 10 trajectories each with 100 realizations of random processes.
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Figure 5.3: TEO as a function of eth for the cases A, B, E, and F, with Ns = 20 (i.e.,

ns = 4) sensors in monostatic or multistatic configuration.

Monostatic Multistatic

ns Td = 4ns Td = 2ns Td = 1ns Td = 4ns Td = 2ns Td = 1ns

1 1.12 1.31 0.97 14.41 14.41 14.41

2 0.63 0.55 0.57 0.88 0.73 0.78

3 0.30 0.21 0.39 0.48 0.40 0.35

4 0.28 0.24 0.20 0.35 0.30 0.26

5 0.30 0.22 0.20 0.40 0.29 0.32

Table 5.1: Tracking RMSE for Npulse = 128, Npar = 1000, and |Psel| = 3 varying ns,

Td [ns], and network configuration.

and Npulse = 32 are comparable with those obtained with |Psel| = 3 and Npulse = 128.

Therefore, given Ns and eth, the selection allows the collection of a lower number of

pulses.

To investigate the effect of dwell time on the RMSE, Table I lists the tracking

RMSE when Npulse = 128, Npar = 1000, |Psel| = 3, Td = 1, 2, and 4 ns, and with

different numbers of sensors per room. Note that, for a given value of Npulse, reducing

Td is less effective than increasing the number of ns.
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5.2 Tracking via Signals of Opportunity

Localization and tracking is important for a number of applications, especially in

military, security, and safety sectors. Depending on the application, the processing

of wireless signals at different receivers allows to infer the position of transmitters, re-

ceivers, or others (e.g., devices, objects, or persons). In particular, we refer to active

or passive localization depending on whether the transmitting source is collaborative

or non-collaborative, respectively. For example, the processing at different receivers

of signals transmitted by non-collaborative sources, namely transmitters of oppor-

tunity, may be exploited to detect and localize the transmitter itself or a mobile

receiver (e.g., passive network localization) or passive scatterers in the monitored

environment (e.g., passive radar).

Passive radars exploit illuminators of opportunity for stealth and low-cost track-

ing [2]. In general, a network of receiving-only radars receives the signal of oppor-

tunity directly from the non-collaborative sources and backscattered by the target.

Several signal processing techniques are proposed in literature to estimate the posi-

tion of the target based on such received waveforms. For example, TDOA, FDOA

and AOA metrics are often adopted in this context since no synchronization is guar-

anteed between receivers and transmitters [3, 4]. Since in a general case the trans-

mitted signal is unknown and uncontrolled, a reference receiver is positioned so that

it receives only the direct signal from the illuminator of opportunity (see, e.g., Fig-

ure 5.4). Then, the direct signal is decoded to provide to the network a reference

signal, which is exploited by other receivers for signal processing.

Digital signals are excellent candidates for signals of opportunity, thanks to their

wide availability and low error-rate decoding. Among digital signal, orthogonal fre-

quency division multiplexing (OFDM) transmission recently gained interest for pas-

sive radar since it can be efficiently implemented as a fast Fourier transform and

used to identify targets based on Fourier analysis across subsequent blocks [126,127].

In particular, previous works on passive radar investigated radio/television stations,

broadcasting in the VHF/UHF frequency bands, and WiFi base stations as illumi-

nators of opportunity [128–130]. For active localization purposes, the LTE standard

specifies a dedicated downlink signal for positioning, i.e. the positioning reference

signal (PRS). Several works investigated active localization via LTE signals and

evaluate the performance in different environments [131–133]. The LTE signals as

illuminators of opportunity for tracking via passive radars are considered.

One of the main impairments affecting localization via passive radar are related
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Figure 5.4: Passive radar scenario and monitored area. Base station, reference re-

ceiver and radars are illustrated in red, black, and blue, respectively. The blue line

represents the target trajectory. Red and green dashed lines represents the direct

and backscattered signal paths, respectively.

to the absence of control on illumination since they use broadcast signals, and a

transmitted signal estimation has to be implemented. However, for many signals

of opportunity this operation can be considered perfectly performed (e.g., perfect

symbol recovering for LTE signals). Neverthless, the separation of the direct path

and reflections within the received signal is challenging since the dynamic range

between direct signal and reflections due to target is of the order of 100 dB and

cannot be handled by analog-to-digital converters. Therefore, even when the source

position is perfectly known, clutter pre-mitigation is required, which is performed

via compensation techniques such as null-steering or directional antennas [134].

The main goals are to

• introduce a passive radar system using LTE signals of opportunity;

• propose a Bayesian framework for the passive tracking and velocity estimation

of moving targets;

• evaluate the performance of a LTE-based passive radar in a case study with

multipath fading channel.
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Passive radar are explored by considering network configuration, wireless propaga-

tion, and signal processing.

5.2.1 System Model

A LTE base station is considered in known position pBS and transmits a broadcast

signal

s̃(t) = ℜ{ej2πfcts(t)} (5.5)

where the baseband signal is

s(t) =

+∞∑

i=−∞

si(t− i T ′) . (5.6)

In particular, s(t) is an OFDM signal using multicarrier modulation scheme given

by

si(t) =

N/2−1∑

n=−N/2

ai[n]e
j2π∆ft

(−Tcp,T ]{t},

(5.7)

where ai[n] are the data symbols carried by each block, ∆f is the frequency spacing

between two subcarrier frequencies, T ′ = T + Tcp, and the ciclic prefix time Tcp is

used to maintain a cyclic convolution between the transmitted waveform and the

channel.

A reference receiver in position pref is such that it receives only the transmitted

signal

rref(t) = Arefs(t− τref) + wref(t) , (5.8)

where wref(t) is the AWGN signal with one-sided spectral density N0, Aref is the

amplitude attenuation, τref = ∥pref −pBS∥/c is the direct signal arrival time and c is

the speed of light.

Based on the state of the art, we can assume that the LTE signal is decoded and

perfectly reconstructed based on the direct signal and that the null steering atten-

uates the direct signal to the level of clutter, reducing the corresponding dynamic

range [134]. Consider a network of radars indexed by R in position rk with k ∈ R
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monitoring an area A, which is illuminated by the LTE base station. Then, the

signal received by the kth radar in the absence of target is r̃k(t) = ℜ{ej2πfctrk(t)},
where the baseband signal after down-conversion results in

rk(t) =

Lk∑

l=1

Ak,lx(t− τk,l) + w(t) (5.9)

where wk(t) is the AWGN signal with one-sided spectral density N0, Lk is the number

of multipath components; Ak,l and τk,l are the amplitude and arrival time of the lth

path.

When a target is present in the monitored environment in position p, the received

signal is composed of the direct signal, the signal backscattered by the target, and the

multipath components of both direct and backscattered signals. Then (5.9) becomes

rk(t) =

Lk∑

l=1

Ak,lx(t− τk,l)

+

Pk∑

h=1

Bk,he
jvψk,h(p)x(t− θk,h(p)) + w(t) (5.10)

where the multipath components due to the direct signal, i.e., clutter, are indexed by

l, while the reflections due to target backscattering are indexed by h. In particular,

ψk,h(p) = 2παk,h(p)fct where αk,h(p) = fk,h(p)/(vfc) = (cosωt(p) + cosωr,k(p)) /c

where fk,h(p) is the Doppler shift, which is assumed to be constant during the integra-

tion time, ωt(p) is the angle describing the relative direction between the transmitter

and the target, and ωr,k(p) is the angle describing the relative direction between the

target and the kth receiver. The adoption of clutter mitigation techniques is consid-

ered, such that the

rk(t) =
1

ξ

(
Lk∑

l=1

Ak,lx(t− τk,l)

+

Pk∑

h=1

Bk,he
jvψk,h(p)x(t− θk,h(p))

)
+ w(t) (5.11)

In a general case, the transmitted signal is reconstructed by decoding the data symbol

at the reference receiver. Based on such reconstruction, a reference signal, i.e. an

estimation of the transmitted signal, is available for the entire network and it is given

by

ŝ(t) =
+∞∑

i=−∞

ŝi(t− i T ′) (5.12)



5.2. Tracking via Signals of Opportunity 81

where

ŝi(t) =

N/2−1∑

n=−N/2

âi[n]e
j2π∆ft

(−Tcp,T ]{t}

(5.13)

Without loss of generality, perfect signal recovery is considered so that ŝ(t) = s(t)

[134].

5.2.2 Bayesian Filtering

The signal received at each radar is processed to detect and track any object present

in the monitored environment moving along a trajectory described by p(t) and ab-

solute velocity v(t). The localization update rate is RL = 1/TL, where TL is the time

between two position and absolute velocity estimations, e.g. p̂1 = p̂(TL), v̂1 = v̂(TL),

p̂2 = p̂(2TL), and v̂2 = v̂(2TL). Tracking is based on a Bayesian approach for the

estimation of the parameter θq = [pq, vq] [15]. In particular, at each time index q

the estimated position and velocity are determined as

θ̂q = [p̂q, v̂q] = argmax
θ∈Θ

bq(θ) . (5.14)

where bq(θ) is the belief function at time tq = q TL and Θ depends on the monitored

environment and the range of considered values for velocity. The belief function at

time tq = q TL is determined as

bq(θ) = η
∏

k∈R

f
(q)
k (θ|r(q)k (t)) (5.15)

where r
(q)
k (t) is the portion of received signal corresponding to an observation time

Tobs, i.e., r
(q)
k (t) = rk(t) if t ∈ [qTobs, (q + 1)Tobs) and 0 otherwise, η is a normal-

ization constant, and f
(q)
k (θ|r(q)k (t)) is the PDF for the kth radar, which is assumed

statistically independent over the radars. In particular, the PDF for the kth radar

is given by

f
(q)
k (θ|r(q)k (t)) = Λk(r

(q)
k (t)|θ)

∫

Θ

f (q)
m (θ|θ̃) bq−1(θ̃)dθ̃ (5.16)
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where Λk(r
(q)
k (t)|p) is the likelihood function for the observed waveform r

(q)
k (t),

f
(q)
m (θ|θ̃) is the mobility model and bq−1(θ̃) is the belief at the previous time in-

dex q − 1. The likelihood function for the jth reader becomes

Λk(r
(q)
k (t)|θ) ∝ exp

{
− 1

N0

∫ tq+Tobs

tq

(
r̂
(q)
k (t, θ)− r

(q)
k (t)

)⋆

×
(
r̂
(q)
k (t, θ)− r

(q)
k (t)

)
dt
}

(5.17)

r̂
(q)
k (t, θ) is a reference signal, which depends on the prior knowledge of the channel.

In the absence of such prior information, we can assume r̂
(q)
k (t, θ) = ejvψk,h(p)tŝ(t −

∥p− rk∥ c). In this case, the likelihood reduces to

Λk(r
(q)
k (t)|θ) ∝ z

(q)
k (∥p− rk∥ c, vψ(p)) (5.18)

where z
(q)
k (τ, ζ) is the correlation function including the Doppler effect in ζ , as given

by

z
(q)
k (τ, ζ) =

∫ (q+1)Tobs

qTobs

e−jζt ŝ⋆(t− τ)r
(q)
k (t)dt (5.19)

The mobility model f
(q)
m (p|θ̃) is based on the previous position estimates. In partic-

ular, a Gaussian mobility model is given by

fm(θ|θ̃) =
1√

2πσm,k

e
−∥θ−(θ̃+θ̇TL)∥2

2σ2
m,k (5.20)

where σ2
m,k depends on the target mobility. The parameter θ̇ is determined based on

previous position estimates as the average speed and acceleration calculated over

Nw previous position and speed estimations.

5.2.3 Case Study

The case study is now presented by describing the performance metrics, system

parameters, and numerical results.

Performance Metrics

As performance metrics for positioning we consider the localization error and the

TEO. The TEO is defined as the probability that the localization error is below a
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Figure 5.5: Example of z
(q)
k (τ(p), vψ(p)) when the true value of τ/Ts = 12 and

τ/Ts = 11 for the direct path, and the clutter mitigation factor is ξdB = 0, 50, 100 dB
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Figure 5.6: Example of true and estimated trajectory for ξdB = 0 and 50 dB.
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given target value eth over the trajectory length. In particular, such probability is

defined as

PTEO = P{ep(pq) > eth} (5.21)

=
1

Q

Q∑

q=1

E{ (eth,+∞){∥p̂q − pq∥}}

where {·} is the indicator function, which is zero when the proposition is false and one

otherwise, and E{·} represents the spatial-temporal statistical expectation. Analo-

gously we define e(v) = |v− v̂| as the velocity error, i.e. the error on absolute velocity

estimation, and the speed error outage (SEO) as the probability that the velocity

error is below a given target value eth over the trajectory length. In particular, such

probability’ is defined as

PSEO = P{ev(v) > eth} (5.22)

=
1

Q

Q∑

q=1

E{ (eth,+∞){|v̂q − vq|}} .

System Parameters

A squared monitored environment of length L = 50m is considered as that shown

in Figure 5.4, with four radars at the corners. The LTE base station is positioned

on the border of the monitored environment at pBS = (0m, 50m) with respect to

the origin assumed in the center of the monitored area. The transmitted signal is

compliant with the LTE standard in the 20 MHz band, with 16-QAM modulation.

The noise spectral density is N0 = −200 dBm. The channel is compliant to the

Extended Pedestrian A model with Rayleigh fading. The target trajectory is a

Gaussian random walking inside the monitored area with constant target velocity

such that v/RL = 10m. Results are obtained by considering the target moving along

a trajectory of 100m. The tracking algorithm is set with σm = 10.

Results

Figure 5.5 shows the correlation z(τ, v) when the true value of τ/Ts = 12 and τ/Ts =

11 for the direct path, and the clutter mitigation is ξdB = 0, 50, 100 dB. In particular,

it can be noticed that when no clutter mitigation is performed, i.e. for ξ = 0dB,

the direct path is those providing the maximum value of correlation, while the useful

contribution due to target is similar to the noise floor. Differently, for ξdB = 50 dB
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the backscattered signal is much more evident even though the multipath and static

clutter are so that the useful contribution does not provide the maximum correlation.

Finally, for quasi-ideal clutter mitigation, i.e. ξdB = 100 dB, the first path due to

target is those providing maximum correlation.

Figure 5.6 shows an example of true and estimated trajectory for ξdB = 0dB

and ξdB = 50 dB. It is evident that in the case without clutter mitigation, in which

the correlation and therefore the predicted belief is due only to the direct path,

the trajectory is estimated to be closer to the transmitter position. Differently,

with clutter mitigation good results with respect to the available time resolution are

obtained.

Figure 6.6 shows the TEO and SEO as a function of eth for different values of

ξdB. Results show that a clutter mitigation factor of 20 dB it is sufficient to obtain

a tracking error below 10 m in the 70% of cases, while it is below 10 m in only the

1% of cases without clutter mitigation. By comparing this result with Figure 5.5 we

can see that the improvement is due also to the tracking algorithm with mobility

model, since the correlation alone is not enough even for ξdB = 50 dB as shown in

Figure 5.5(b).



Chapter 6

RFID for Identification and

Tracking

An RFID system is composed of a network of readers aiming to identify tags attached

to objects and persons through wireless communications. In particular, the reader

interrogates via a radio link the tags that answer by communicating both their

identification and stored data [135]. Among all possible solutions, semi-passive tags

are very promising for applications requiring extremely low power consumption as the

energy, available from batteries or harvesters, is used only for control logic operations.

In fact, the tag-reader communication is based on backscatter modulation, which

consists in changing the tag’s antenna load according to the data to be transmitted,

therefore modifying how the antenna reflects back the interrogation signal [135]. Note

that the backscatter modulation does not require the emission of new radiofrequency

(RF) energy and hence it is usually classified as a passive communication scheme.

Considering the convergence of RFID and high-definition real time locating sys-

tems (RTLS) toward the radio detection, identification, and localization (RaDIAL)

concept for enhancing the functionalities offered to the end user and enabling new po-

tential wide market applications [136], the adoption of the UWB technology [93,108]

is particularly appealing for its capability of communication robustness and localiza-

tion accuracy even in harsh propagation environments [5, 22, 24, 29, 94, 137].

Figure 6.1 shows an example scenario with a reader that interrogates semi-passive

UWB tags located in the same area. To save energy, tags are normally in sleep mode

and are woken-up through the transmission of a wake-up signal (e.g., an unmodulated

ultra-high frequency (UHF) carrier) [138,139]. Each tag reflects the incoming UWB

interrogation signal by means of backscatter modulation according to its internal

87
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Figure 6.1: Scenario with a reader interrogating several tags.

information and identification code. Signals backscattered by different tags can be

distinguished through the adoption of different spreading codes [140], therefore an

anti-collision protocol (used, e.g., in Gen. 2 RFID [141–143]) is not required.

The reader-tag communication suffers from the presence of clutter (the signal

backscattered by the environment), multi-tag interference, tag clock drift (due to

the low-cost local oscillators), and poor link budget of the backscatter two-way

link [124, 144]. The near-far interference effect [145, 146], which is typical of code

division multiple access (CDMA) systems in the presence of multiple users, is detri-

mental for reader-tag communication, as classic power control approaches cannot be

adopted in this scenario due to the passive nature of the tags. These issues have

been only separately investigated in the literature [147–151], and classically focus on

narrowband rather than UWB systems [152–156].

In [157] an UWB-RFID reader architecture capable of robust tag detection, even

in the presence of multi-tag interference and clock drift effects, is presented. A

low-complexity partially-non-coherent detection scheme is proposed and analyzed,

and tag code design criteria are given. Specifically, the proposed technique enables

robust tag detection in multi-tag scenario even in the presence of strong near-far in-

terference effect, which stems from the two-hop communication nature of the system.

Simulation results show the performance in terms of tags detection capability.

The key contributions can be summarized as follows:
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Figure 6.2: Reader (left) and tag (right) block schemes.

• proposal of a low-complexity tag detection scheme robust to near-far interfer-

ence effects for UWB-RFID system based on backscatter modulation;

• design of spreading codes for backscatter modulation and multi-tag coexistence;

• analysis of the proposed UWB-RFID system in the presence of multi-tag inter-

ference and non-idealities such as clock drift and near-far interference effects;

• quantification of system performance for various settings and conditions.

6.1 Multi-tag RFID Systems

6.1.1 Backscatter Communication

The backscatter communication for the considered system is now described.

Transmitted Signal Format

In semi-passive UWB-RFID systems based on backscatter modulation, the reader is

the only active device, thus with capability of transmitting, receiving, and processing

signals. Tags act as passive reflectors only. Consider a reader scheme as shown in

Figure 6.2 composed of a transmitter and receiver sections. The transmitter section

emits periodic interrogation signals while the receiver section analyzes the received

backscattered response to detect tags located in the area of interest. Figure 6.3
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shows the structure of the reader’s interrogation signal. Initially, tags are in sleeping

mode to save energy and a wake-up signal is used for waking up all the tags present

in the environment monitored by the reader. For example, a wake-up signal in the

UHF band can be used [138], which requires a dedicated transmitter and antenna as

shown in Figure 6.2. The same wake-up signal can be also exploited to provide energy

to the tag. The presence of Ntag tags is considered in the monitored environment.

After the transmission of the wake-up signal, the reader starts emitting the UWB

interrogation signal, which contains a sequence of NS symbols each composed of Nc

chips carrying Npc pulses per chip.

The chips are modulated in amplitude by an antipodal binary spreading sequence

{dn} of length Nc, which is specific of the reader (namely reader’s code). In partic-

ular, the interrogation signal transmitted by the reader is

sreader(t) =

NS−1∑

m=0

s(t−mNcTc) (6.1)

with symbol duration Ts = NcTc, chip duration Tc, and

s(t) =

Nc−1∑

n=0

dn g(t− nTc) (6.2)

where

g(t) =

Npc−1∑

i=0

p(t− iTp) . (6.3)

The signal g(t) is composed of Npc UWB pulses p(t), centered at frequency fc with

bandwidth W and energy Ep. The PRP Tp is chosen so that all backscattered

signals are received by the reader before the transmission of the following pulses,

thus avoiding inter-frame interference. The pulse energy Ep and the PRP Tp are

chosen to guarantee a spectrum emission compliant with the regulation mask in

terms of Equivalent Isotropic Radiated Power (EIRP).1

After the transmission of each pulse, the reader’s receiver section (see Figure 6.2)

collects the response backscattered from all tags located in the monitored environ-

ment, as well as the clutter. Then, the collected signal responses are processed to

detect the presence of an intended tag, as detailed in the next sections.

1While the considered scheme is general, in the numerical results the European lower-band mask

will be fulfilled.
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Figure 6.3: The interrogation signal structure.

Backscatter Modulation

When a reader transmits the interrogation signal, each tag sends its information

back to the reader by modulating the backscatter signal through a proper variation

of the load connected to its antenna (backscatter modulation) [108]. The response

of each tag is composed of two contributions: the structural mode scattering and

the antenna mode scattering. The former stems from all the reflections given by

the antenna and its support, while the latter depends on how the antenna is loaded

thus on the tag ID [158]. Figure 6.2 shows also the tag scheme in which the antenna

backscattering properties are changed by varying the antenna load through a UWB

switch. Specifically, the switch connects the antenna to two different loads according

to the modulating signal m(k)(t), which is specific of the kth tag. When open and

short circuit loads are adopted, the resulting modulation corresponds ideally to a

phase inversion of 180◦ of the antenna mode pulse polarity.2 To mitigate clutter

and interference, each tag is designed to change its status (short or open circuit) at

each chip time Tc =Npc Tp according to an antipodal tag’s code c
(k)
n ∈ {−1, 1}, for

n = 0, 1, . . . , Nc−1 . In case the code is unique for each tag in the area, it represents

the tag ID, hence tag detection and identification reduce to code detection. Provided

that the total number of pulses per symbol Np = NcNpc is identical for readers and

tags, the same values Npc and Nc at both reader and tag sides is considered. Note

that the same symbol structure can also be adopted to allow tag-to-reader data

transmission, as discussed in [140, 151].

2Note that non-idealities related to the adopted switch or to the presence of objects may affect

the pulse shape for the two different loads thus degrading the performance [159].
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Tag-to-Reader Communication

After the reception of the wake-up signal, tags activate their backscatter modulator

that starts switching the antenna load according to the modulating signals m(k)(t)

(i.e., according to tags’ codes {c(k)n }). Besides reader and tags are asynchronous

as they have independent clock sources, the wake-up signal can also be exploited

to reset the tag spreading code generator (see Figure 6.2), thus providing a coarse

synchronization. Therefore, the system can be considered as quasi-synchronous, as

discussed afterward in Section 6.1.2.

The presence of a low cost oscillator in the tag and the long symbol duration make

clock drift effects not negligible after the reception of a few symbols.3 Consider a

model for the clock difference between the clock at the kth tag and that at the reader

as S(k)(t) = T
(k)
o + D(k)t, where T

(k)
o is the residual time-offset after the wake-up,

and D(k) is the clock drift.4 This model leads to the modulating signal commanding

the switch of the kth tag given by

m(k)(t) =

NS−1∑

j=0

Nc−1∑

n=0

c(k)n Π

(
t− jNcT̃

(k)
c − nT̃

(k)
c − T

(k)
o

T̃
(k)
c

)
(6.4)

with T̃
(k)
c =Tc

(
1+D(k)

)
, Π(t) ! 1 for t ∈ [0, 1] and 0 elsewhere. Thus, the polarity

of the reflected signal changes at each chip time (i.e., every Npc pulses) according to

the kth tag’s code {c(k)n }.

The signal backscattered by the tag propagates back to the reader’s antenna

through the reader-tag link [124]. Over the symbol time Ts, the one-way channel

impulse responses (CIRs) h(k)(t), related to the reader-kth tag link, and h(c)(t),

related to the environment forming the clutter are static. By channel reciprocity,

the received signal at the reader is5

rreader(t)= w(t) + n(t) (6.5)

3Note that the symbol duration is longer than that used in conventional active UWB transmission

[160] due to the need of collecting a high number of UWB pulses per symbol to counteract the poor

link budget of backscatter links [124].
4This is equivalent to consider, as a first approximation, the effects of the phase noise constant

over a symbol time Ts.
5Operator ⊗ denotes the convolution.
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where

w(t)=

Ntag∑

k=1

[(
sreader(t)⊗h(k)(t)

)
m(k)(t)

]
⊗h(k)(t)

+ sreader(t)⊗ h(c)(t)

(6.6)

and n(t) is the AWGN with one-sided power spectral density N0. The tag structural

mode is treated as part of clutter since it is not affected by backscatter modulation.

Note that the received signal is obtained through the double convolution of the

interrogation signal with the one-way CIR h(k)(t) [124, 161].

In conventional active UWB communication systems, the clock drift affects the

timing of UWB pulse transmission in tags. Thus, the TOA and the PRP seen by the

receiver result different from those expected and a proper fine synchronization scheme

is required if large Ts is adopted. On the contrary, in backscattering communication,

the TOA and the PRP of the backscattered pulses, generated by the reader itself,

are not affected by the tag clock drift, which modifies only how they are modulated,

that is, the code phase of the backscattered signal. Tag code acquisition will be

investigated in the next section.

6.1.2 System Design

Receiver Design

A partially-non-coherent architecture is considered, where the received signals are

first de-spread using the intended reader and tag codes and then coherently accu-

mulated to enhance the SNR. Subsequently, a low-complexity energy detector is

used to detect the presence of a tag. This receiver does not require CIR estimation

and it results to be a good compromise between performance and complexity. An

example of implementation of such a receiver is presented in [162]. The de-spreading

procedure and the tag detection scheme are described in the following.

Signal De-Spreading

After the spreading process at the transmitter and the backscatter modulation at

a tag indexed by k, the received signal results to be spread by the composed code

{dn c
(k)
n }, whereas the clutter only by the reader code {dn}. This property can
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Figure 6.4: Partially-non-coherent tag detection scheme.

be exploited to discriminate the intended signal from interfering signals associated

to other tags and from the clutter. Specifically, signal de-spreading is operated

coherently through the accumulation of the received signals corresponding to the Np

transmitted pulses p(t) within a symbol. Such an accumulation enhances the SNR,

allowing a better discrimination of the backscatter signal associated to a specific

reader-tag pair. The periodically repeated sequences of length Nc and period Np =

NcNpc is defined as c̃
(k)
l ! c

(k)
⌊l/Npc⌋

and d̃l ! d⌊l/Npc⌋ for l = 0, 1, . . . , Np−1, with

c̃
(k)
l+Np

= c̃
(k)
l , d̃l+Np = d̃l, and ⌊·⌋ denoting the floor operation.

The wake-up offset T
(k)
o and the clock drift D(k) associated with the kth tag cause

an uncertainty on the offset (phase) of the tag’s spreading code with respect to the

local clock of the reader. The typical long symbol time discourages the adoption

of serial code acquisition schemes, as they would imply intolerable acquisition time.

Tag detection can be performed jointly with code acquisition by employing parallel

de-spreaders, each tuned to a differently shifted version of sequence {c̃(k̂)l } and to in-

phase version of sequence {d̃l} according to the scheme in Figure 6.4. In particular,

we consider code acquisition with Nsp shifts (i.e., Nsp parallel de-spreaders) and step

∆, which determines an overall code acquisition window of ∆(Nsp − 1) chips. The

values of Nsp and ∆ are chosen based on the robustness of the spreading codes to

clock drift and the wake-up offset. Note that Nsp is upper limited by the sustainable

receiver complexity.

Without loss of generality, consider the detection of the tag indexed by k̂ (useful

tag) observing the first symbol (i.e., acquiring Np pulses).6 According to the receiver

architecture shown in Figure 6.4, first, the received signal rreader(t) is filtered7 to

eliminate the out-of-band noise (this operation is necessary for energy-based detec-

6Note that the decision can be taken after the observation of many symbols to guarantee a more

robust tag detection.
7An ideal band-pass filter of bandwidth W with center frequency fc is considered.
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tors [44]). The filtered signal is denoted by

r̃(t) = w̃(t) + ñ(t) (6.7)

where w̃(t) = w(t)⊗ hF(t), with hF(t) being the filter impulse response, and ñ(t) =

n(t)⊗hF(t) a zero-mean Gaussian random process. Subsequently, the filtered signal

is de-spread giving Nsp outputs corresponding to Nsp different code shifts

yn(t) =

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆ r̃(t+lTp) (6.8)

with t ∈ [0, Tp], ν = −⌊(Nsp + 1)/2⌋ and n= 1, 2, . . . , Nsp. In the absence of code

acquisition (only 1 de-spreader) it is Nsp = 1 and (n+ ν)∆ = 0 .

It is possible to decompose (6.8) as yn(t) = xn(t) + zn(t), with the noise term

zn(t) given by

zn(t) =

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆ ñ(t+lTp) (6.9)

and the term xn(t) expressed as

xn(t) =

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆ r̃t(t+lTp)

+

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆ r̃c(t+lTp) (6.10)

where r̃t(t+lTp) is the signal component related to tags, and r̃c(t+lTp) is the clutter

component. In (6.10), r̃c(t) = sreader(t)⊗ h(c)(t)⊗ hF(t) denotes the clutter compo-

nent. The received signal component r̃t(t) is given by

r̃t(t) =

Ntag∑

k=1

[(
sreader(t)⊗ h(k)(t)

)
m(k)(t)

]

⊗ h(k)(t)⊗ hF(t) (6.11)

and comprises signals backscattered by both the useful and the interfering tags. By

considering the clutter CIR h(c)(t) stationary over a symbol time Ts, we have r̃c(t+

lTp) = d̃l ζ(t), for t ∈ [0, Tp] with l=0, 1, . . . , Np−1, and ζ(t) ! p(t)⊗h(c)(t)⊗hF(t) .

Therefore, the clutter component at the output of the de-spreader results in

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆ r̃c(t+lTp) = ζ(t)

Np−1∑

l=0

c̃
(k̂)
l+(n+ν)∆ . (6.12)
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From (6.12), it can be noticed that the clutter component at the output of the de-

spreader is canceled when the tag code {c̃(k̂)l } is exactly balanced (i.e., with the same

number of ±1). This is an important property tags’ codes have to satisfy in addition

to those presented in Section 6.1.2.

The superposition of the large signal due to clutter and of the small backscattered

signals from tags requires a radiofrequency front-end of the UWB-RFID reader with

high-dynamic range. This affects the design of the sampling rate and of the number

of quantization levels for digital conversion depending on the receiver architecture

chosen. In a fully digital architecture it is necessary to ensure a proper digital con-

version of the small backscattered signals while preventing saturation due to clutter.

This requires sampling at Nyquist rate and a high number of quantization levels.

In a hybrid analog-digital architecture, the analog mitigation of clutter reduces the

dynamic range which now depends on the reader-tag distances and near-far effects

discussed in the following sections. This can result in a reduced sampling rate and

number of quantization levels.8

Tag Detection

The detection in parallel of Ntag tags requires replicating for each tag the same

receiver structure which is here described.9 According to the consideration made in

Section 6.1.2, balanced codes are adopted, for which (6.10) reduces to

xn(t) =

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆ r̃t(t+lTp) . (6.13)

The term xn(t) can be further decomposed by noticing that r̃t(t) is the combination

of Ntag tags channel responses to the interrogation signal as given by

xn(t)=

Np−1∑

l=0

d̃l c̃
(k̂)
l+(n+ν)∆

Ntag∑

k=1

ω(k)(t+ lTp) t ∈ [0, Tp] (6.14)

where the single-tag channel response to the interrogation signal is

ω(k)(t) =
[(
sreader(t)⊗ h(k)(t)

)
m(k)(t)

]
⊗ h(k)(t)⊗ hF(t) . (6.15)

8An example of front-end architecture for UWB-RFID adopting 12 bits and sub-Nyquist sam-

pling is presented in [150].
9Note that the partially-non-coherent detector reported in Figure 6.4, helps to keep the system

complexity affordable.
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The de-spreading process is followed by the evaluation, for each de-spreader out-

put yn(t), of energy bins performed over a PRP Tp as follows

en,m=

∫ mTED

(m−1) TED

[yn(t)]
2 dt (6.16)

with n = 1, 2, . . . , Nsp, m = 1, 2, . . . , Nb and where Nb = ⌊Tp/TED⌋ represents the

number of integration bins in which each PRP is divided in for an energy detector

integration time TED. Such energy bins can be arranged, for convenience, into a

Nsp ×Nb energy matrix E = {en,m}. Each element en,m of the energy matrix is then

compared with a threshold ξn,m: if at least one element is above the threshold, then

the tag is considered detected. The design of the threshold ξn,m is challenging and

is addressed in the following section.

Tag Code Design

Backscatter communication carries several challenges that can be partially mitigated

by carefully designing the spreading codes used by tags. The requirements for tags

code design are: availability of a sufficient number of sequences given a specific code

length Nc; mitigation of clutter and clock drift effects; and suppression of multi-

tag interference. Hereafter, these aspects and their impact on tag code design are

discussed.

6.1.3 Threshold Design

We now derive a strategy to determine the thresholds ξn,m associated to each energy

bin with the purpose to obtain a robust detection performance even in the presence

of several tags. In particular, such strategy aims to improve the overall probability

of detection (PD), that is, the probability of taking the correct decision when the

tag is present, for a given target overall probability of false alarm (PFA), that is, the

probability that a tag is erroneously detected as present when absent. Overall PFA

and overall PD are indicated by PFA and PD, respectively. By defining H1 and H0

the hypotheses related to the presence and absence of the tag, respectively, and the

set D = {(n,m) : en,m > ξn,m} with cardinality |D|, the decision rule is given by

Decide:

⎧
⎨
⎩
Ĥ0 ; |D| = 0

Ĥ1 ; |D| > 0 .
(6.17)
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The threshold values affect the performance of the detection scheme in terms of both

PD and PFA. In fact, low values for the thresholds ξn,m lead to high PFA and high

PD, while high values lead to low PFA and low PD. We define the single-bin PFA

p
(n,m)
FA as the probability that the single energy bin en,m exceeds the threshold ξn,m

in the absence of tag, and the single-bin PD p
(n,m)
D as the probability that the single

energy bin exceeds the threshold in presence of the tag.

The coordinates

(n̂, m̂) = argmax
(n,m)∈D

{en,m} (6.18)

associated to the maximum energy bin exceeding the threshold, provide an estimate

of the tag clock offset in terms of number of PRPs and a coarse estimate of the

signal TOA τ̂ = m̂ TED, respectively. Note that the maximum resolution in TOA

estimation, which is essential for time-based ranging, depends on TED [29]. TOA

estimates can be further improved by adopting ranging strategies described in [29].

The typical bin-independent approach, employing a constant threshold ξn,m = ξ

for all (n,m), is not suitable for UWB-RFID systems based on backscatter mod-

ulation in the presence of multi-tag interference. In fact, the useful tag can be

hidden by residual interference peaks coming from tags that are closer to the reader

than the useful one (i.e., near-far interference effect). Therefore, a bin-independent

threshold would increase the PFA significantly, which is detrimental especially in the

two-hop propagation channel. In such a channel, the received power in free-space

propagation is proportional to d−4 where d is the reader-tag distance [124]. For

instance, for a useful and an interferer tag at distance dU and dI from the reader,

respectively, the difference (in dB) in the receiving power at reader side from the

two tags is 40[log10(dU)− log10(dI)] dB. If this difference is not properly mitigated by

the de-spreading with the useful tag code, a high PFA is expected due to near-far

interference effects.10

To comply with this phenomenon, a bin-dependent threshold is proposed. In

particular, we derive the threshold providing a target overall PFA P ⋆
FA, in the presence

of multi-tag interference. To this purpose, consider the normalized energy detector

test

Λ
(n,m) =

2

NpN0

en,m
Ĥ1

≷
Ĥ0

ξ̃n,m (6.19)

10Such effects are obviously even more evident in the presence of multiple interfering tags and

multipath propagation. Note that power control techniques (see, e.g., [163]) cannot be used due to

the passive nature of the communication here considered.
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where ξ̃n,m ! 2 ξn,m

NpN0
. By following the approach proposed in [44], we obtain

Λ
(n,m)=

2

NpN0

∫ mTED

(m−1) TED

[yn(t)]
2 dt ≃ 1

σ2

mN∑

i=(m−1)N

ŷ2n,i (6.20)

for n = 1, 2, . . . , Nsp and m = 1, 2, . . . , Nb, with ŷn,i = x̂n,i + ẑn,i, N ! 2WTED, and

noise variance σ2 = NpN0W .11 The terms ŷn,i, x̂n,i, and ẑn,i represent for odd i (even

i) the samples of the real (imaginary) part of the equivalent low-pass ŷn(t), x̂n(t),

and ẑn(t) of signals yn(t), xn(t) and zn(t), respectively, with sampling at Nyquist

rate W in each interval. Noise samples zn,i are statistically independent Gaussian

RVs with zero mean and unitary variance.

Consider the k̂th useful tag to be detected, while other tags indexed by k̸=k̂ cause

interference. For further convenience, the case whether the desired tag is present or

absent are distinct, by defining

x(H)
n (t)=

⎧
⎨
⎩

∑Np−1
l=0 d̃l c̃

(k̂)
l+(n+ν)∆

∑Ntag

k=1, k ̸=k̂
ωk(t) ; H=H0

∑Np−1
l=0 d̃l c̃

(k̂)
l+(n+ν)∆

∑Ntag

k=1 ωk(t) ; H=H1 .
(6.21)

Note that in the absence of the useful tag, xn(t) could be different from 0 due to

the presence of a residual interference term after the de-spreading responsible for the

near-far effect.

Under the hypothesis H0 (absence of useful tag), the normalized decision variable

results in

Λ
(n,m)|H0 =

2

NpN0

∫ mTED

(m−1) TED

[
x(H0)
n (t) + zn(t)

]2
dt

≃ 1

σ2

mN∑

i=(m−1)N

(
x̂
(H0)
n,i + ẑn,i

)2

(6.22)

where x
(H0)
n,i are the sampling expansion coefficients of the equivalent low-pass x̂

(H0)
n (t)

of x
(H0)
n (t). Under both hypotheses H0 and H1, the RV Λ

(n,m) describing the energy

detector output is non-central Chi-square distributed with N degrees of freedom,

and with PDF fNC(y,λ, N) given by

fNC(y,λ, N) =
1

2
e−

y+λ

2

(y
λ

)N−2
4
IN

2
−1(

√
yλ) (6.23)

11The approximation is valid for large values of N [44, 164], and WTED is considered integer.
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for y ≥ 0, where the non-centrality parameter λ depends on H0 and H1 and Iκ(·)

denotes the κth order modified Bessel function of the first kind. In particular, un-

der the hypotheses H0, the presence of x̂
(H0)
n,i leads to the non-centrality parameter

λ
(H0)
n,m = 2γ

(H0)
n,m [44] , where γ

(H0)
n,m is the interference-to-noise ratio (INR) per bin given

by

γ(H0)
n,m =

1

NpN0

∫ mTED

(m−1) TED

[
x(H0)
n (t)

]2
dt

≃ 1

2σ2

mN∑

i=(m−1)N

(
x̂
(H0)
n,i

)2

. (6.24)

A threshold-crossing event under hypothesis H0, that is, Λ
(n,m)|H0 > ξ̃n,m, causes

a false alarm event. This results in a single-bin PFA p
(n,m)
FA given by [48]

p
(n,m)
FA =

∫ ∞

ξ̃n,m

fNC(y,λ
(H0)
n,m , N) dy

=Qh

(√
λ
(H0)
n,m ,

√
ξ̃n,m

)
(6.25)

with Qh(α, β)=
∫∞

β
x ( x

α
)k−1exp

(
−x2+α2

2

)
Ik−1(αx) dx denoting the generalized Mar-

cum’s Q function of order h = N/2 [165]. The non-centrality parameters are strictly

related to the interference level at each bin en,m. In case of bin-dependent threshold

ξn,m the same PFA for all bins is imposed, (i.e., p
(n,m)
FA = pFA ∀ (n,m)). Considering

independence among energy bins, the overall PFA results in12

PFA = 1− (1− pFA)
M ≃ MpFA (6.26)

where M = Nb Nsp. The threshold ξn,m, corresponding to a target overall PFA P ⋆
FA

can be determined from (6.25) and (6.26) as given by

ξn,m =
NpN0

2

[
Q−1

h

(√
λ
(H0)
n,m ,

P ⋆
FA

M

)]2
(6.27)

with Q−1
h (·, ·) denoting the inverse generalized Marcum Q function [165].

Once the bin-dependent threshold is set to guarantee a certain overall PFA, it is

possible to determine the correspondent single-bin PD as follows. Consider now the

12This approximation is exact in case of Nsp = 1, because the noise components are independent

in different bins. Differently, when Nsp > 1 the energy matrix elements corresponding to shifted

local replicas of the useful tag code, but to the same bin index, are correlated and thus are not

independent. Consequently a threshold more conservative than the necessary is expected.
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hypothesis H1 and the corresponding normalized decision variable, which is described

by

Λ
(n,m)|H1 =

2

NpN0

∫ mTED

(m−1) TED

[
x(H1)
n (t) + zn(t)

]2
dt

≃ 1

σ2

mN∑

i=(m−1)N

(
x
(H1)
n,i + zn,i

)2

(6.28)

where x
(H1)
n,i are the sampling expansion coefficients of the equivalent low-pass x̂

(H1)
n (t)

of x
(H1)
n (t), leading to a non-centrality parameter λ

(H1)
n,m = 2γ

(H1)
n,m , where the interference-

plus-signal-to-noise-ratio (ISNR) γ
(H1)
n,m per bin is defined as

γ(H1)
n,m =

1

NpN0

∫ mTED

(m−1) TED

[
x(H1)
n (t)

]2
dt

≃ 1

2σ2

mN∑

i=(m−1)N

(
x̂
(H1)
n,i

)2

. (6.29)

The single-bin PD p
(n,m)
D is given by [48]

p
(n,m)
D = Qh

(√
λ
(H1)
n,m ,

√
ξ̃n,m

)
(6.30)

and the overall PD PD can be finally computed as

PD = 1−
Nsp∏

n=1

Nb∏

m=1

(
1− p

(n,m)
D

)
(6.31)

for independent energy bins.

Note that the multi-tag detection approach in the presence of interference requires

the knowledge of the INR per bin γ
(H0)
n,m to define a proper bin-dependent threshold

ξn,m according to (6.27). In [157] a practical approach is presented for determining

the threshold without an exact prior knowledge of the interference level (i.e., of the

non-centrality parameters).

6.1.4 Tracking Results

Localization and tracking algorithms rely on TOA estimations based on backscat-

tered received signal at each reader in the network [5, 22, 29, 166]. Specifically, we

consider here tracking algorithms based on extended Kalman filters (EKFs) and
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particle filters (PFs) for dynamic tags, reducing to least square (LS) for static tags.

Localization and tracking performance are given in terms of root mean square error

(RMSE), localization error outage (LEO), and tracking error outage (TEO) [13]. The

dependence of performance on the operating scenario and the time interval between

two consecutive TOA estimations Tr is investigated.

A 10m x 10m square room with four readers located at the corners is chosen

as bi-dimensional reference scenario. Preliminary results are obtained by consid-

ering a channel model simulated as the combination of a two-way IEEE 802.15.4a

channel model with backscattering antenna response. For this case, details of signal

processing and TOA estimation can be found in [167].

Measurement campaigns have been carried out within SELECT to investigate

channel propagation and antenna response in different environments (warehouse-like,

room-like, and laboratory-like) presenting different multipath and LOS conditions

[168]. Results enabled the derivation of a channel model and antenna response

based on measurements. Furthermore, the effects of the presence of interfering tags

on TOA estimation accuracy is investigated by simulations.

Preliminary tracking results are obtained with EKF-based algorithm by consider-

ing the simulated channel model in the absence of interferers, for a tag moving with

a maximum speed of 1m/s. Specifically, the RMSE over 100 random trajectories is

0.17m and 0.39m for Tr = 0.5s and Tr = 1s, respectively.

Localization and tracking are then evaluated for PF-based algorithm by con-

sidering measured channel models and antenna responses, and the presence of 21

interferers located between 2 and 8m from each reader.

For tracking with PFs, a Gaussian model is assumed for mobility, where at each

instant the standard deviation depends on the uncertainty of the target movement,

and the mean depends on the previous position estimate. The tracking algorithm

estimates the tag position every Tr seconds and is based on the speed and direction

learning model (SDL), in which at each time tk = t0 + kTr (with k = 1, ..., N and

t0 being the time of the first estimate) the speed vector vk−1 is determined from

previously estimated positions. We assume a perception model with Gaussian dis-

tribution, whose standard deviation depends on both the TOA estimation technique

and propagation conditions. Details on the mobility and perception models chosen

can be found in [169].

Figure 6.5 shows LEO for the LS algorithm obtained over 1000 position estima-

tions for a static tag within the monitored area. The localization error is below
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Figure 6.5: LEO over 1000 tag positions for three different channel models.

0.37m, 0.4m, and 0.56m in the 75% of cases for the warehouse, room, and laboratory

scenario, respectively. The TEO shown in Figure 6.6 is evaluated over 10 different
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Figure 6.6: TEO over 10 random trajectories each of length 20m for Tr = 1s (solid)

and Tr = 0.5s (dashed), and three different channel models.

random trajectories for Tr = 1s and Tr = 0.5s, for a tag moving at 1m/s. Specifically,

for the warehouse scenario, the tracking error is below 0.7m and 2.07m in the 75%

of cases for Tr = 0.5s and Tr = 1s, respectively.
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6.2 RFID for OOA estimation

Network localization is of great interest for numerous new wireless applications [5].

In passive wireless systems, such as those based on RFID [170, 171], high-accuracy

localization enables context-aware applications that could spread the adoption of

such a technology [172–174]. Among all, the estimation of the tags OOA for sorting

and tracking of goods moving on a conveyor belt is finding great interest for industrial

and logistics applications [175–180]. Examples of applications are the management

of goods in warehouses, the automatic processing of items in supply chains and the

routing of luggage in airports.

Current localization techniques adopted for sorting with standard Gen. 2 UHF-

RFID are based on received signal strength indicator (RSSI) measurements [173],

phase measurements (also at different operating frequencies) [179–182], and AOA

[176,183,184]. These solutions are affected by several drawbacks in real environments

where non-idealities such as NLOS channel conditions and multipath propagation

cause localization/sorting errors. On the other hand, barcode-based optical sorting

can guarantee tags discrimination down to an inter-tag distance of about 30 cm,

which is challenging to be achieved by actual UHF-RFID systems. Differently, optical

systems are not appealing for the small amount of data which can be included in the

barcode.

The UWB technology is able to guarantee high localization and sorting perfor-

mance even in harsh propagation environments [13,22,29]. Recently, UWB has been

proposed also for RFID systems [108, 140, 146, 149]. Another interesting feature en-

abled by the adoption of UWB signals is the possibility of integrating localization

of RFID tags with radar signal processing for detection and tracking of untagged

objects and persons (e.g., for detecting untagged items on the conveyor) [137,185].

A hybrid UHF-UWB RFID system based on backscatter modulation for identify-

ing and sorting tags moving on a conveyor belt is proposed. The main contributions

are: the introduction of performance metrics for OOA estimation performance char-

acterization; the proposal of a novel UHF-UWB RFID system with Bayesian tracking

for OOA estimation; the quantification of OOA estimation performance for a case

study of practical interest.

6.2.1 System Model for OOA Estimation

We now describe the network model and system architecture for OOA estimation.
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Figure 6.7: Conveyor belt scenario, the OOA of the objects with respect to the

monitored area is indicated by the vector o.

Network Model

We consider a stream of No objects with index set O laying on a conveyor belt with

length Lc, width Wc, and moving with a known speed vector v= [vx, vy, vz] ∈ R
3

and magnitude vc according to a Cartesian coordinate system (see, e.g., Figure 6.7).

We are interested in detecting, identifying, and estimating the OOA of the objects

within a monitored area Am of length Lm and width Wm of the conveyor belt (i.e., a

sorting process). The OOA estimation is determined by the order with which objects

leave the monitored area. Specifically, the system tracks each object along the

conveyor belt and estimates the OOA of the stream, based on the position estimates

corresponding to the last detection of each object within the monitored area. In

particular, o is the vector representing the true OOA, therefore o[k] = l indicates

that the lth object is the kth to cross the monitored area.

Each object is equipped with Nto tags. In particular, the jth tag on the ith object

at time index k is in position p
(k)
ij = [x

(k)
ij , y

(k)
ij , z

(k)
ij ] ∈ R

3 with respect to the reference

system in Figure 6.7, i = 1, ..., No and j = 1, ..., Nto.
13 Time indexes correspond

to the instants in which measurements are taken by the readers. We consider Nr

readers, with index set R. The rth reader is in known position rr and transmits

signals to detect, identify, and localize the tags in the monitored area. Specifically,

in the example shown in Figure 6.7, Nr = 4, v = [vc, 0, 0], x
(k)
ij = x

(1)
ij + (k − 1) vcTu ,

13Note that the position of each tag at time index k depends on the first position p
(1)
ij and varies

according to the conveyor belt speed.
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y
(k)
ij = y

(1)
ij and z

(k)
ij = z

(1)
ij , where vc is the constant speed of the conveyor belt along

the x⃗ direction and Tu is the interrogation repetition time (i.e., the difference between

adjacent tag position estimations).

A position estimate p̂
(k)
ij is determined for each time index k ∈ Kij , where Kij

is the set of time indices in which the jth tag of the ith object is detected and

identified after that a measurement is taken. The maximum localization update rate

is Ru = 1/Tu . Let D ⊆ O be the set of objects that have been detected at the end

of the process. An object is considered detected if at least one of its tags is detected

by one reader during the time it is within the monitored area. We define od as the

OOA vector conditional on detection, which represents the relative OOA among the

objects in D. Starting from the tag position estimates, the OOA vector ô is estimated

by considering as object position the tag’s position which is the greatest with respect

to the conveyor direction. Note that the dimension of the vector o is unknown, then

ô and o have different length in case of misdetections since |D| ≤ No.
14

Let k̂o be the vector of the greatest time indices at which each object has been

detected and localized within the monitored area, with elements k̂o[i] and i ∈ D,

(i.e., k̂o[1] = n if n is the last time index at which the object indexed by 1 has been

detected). This vector is determined based on the tag position estimates

k̂o[i] = max{k ∈ Kij : p̂
(k)
ij · v ∈ Am , j = 1, 2, . . . , Nto} (6.32)

where a · b is the scalar product between vectors a and b. The OOA estimate ô is

determined in |D| steps. At each step h, with h = 1, 2, . . . , |D|, the hth element ô[h]

is determined by considering only the set of objects which have not been ordered

until the previous step, i.e. having index i /∈ {ô[1], ..., ô[h− 1]}. Based on such a set

of indices, we choose the minimum time index kh at which at least one object has

been detected for the last time, i.e. kh = min
{
k̂o[i] : i /∈ {ô[1], ..., ô[h− 1]}

}
. We

focus on the objects having index i such that k̂o[i] = kh, i.e. those detected for the

last time at kh, and we sort their position with respect to the conveyor belt speed

direction.15 Then, the hth element of ô is determined as

ô[h] = argmax
i s.t. k̂o[i]=kh

{
p̂
(kh)
ij · v : j = 1, 2, . . . , Nto

}
. (6.33)

14Notation |A| indicates the cardinality of the set A.
15 Note that if v varies with time, we refer to the conveyor speed at the time indexed by kh.
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System Architecture

We consider an UHF-UWB RFID system based on the modulation of the backscatter

signal to have a low-cost, low-complexity and low-energy consuming tag. The UHF

link serves for both network synchronization and reader-tag data communication

(e.g., using a standard Gen. 2 protocol), while the UWB link serves for reader-tag

ranging and tag-to-reader data transmission [140]. Each reader consists of a joint

UHF-UWB transmitting/receiving unit designed to enable network synchronization,

tag detection and identification, tag TOA estimation for localization and sorting,

even in the presence of non-idealities such as multi-tag interference and tag clock

drift [146].16

To save energy, tags are most of the time on a power-saving mode and they need

a wake-up procedure to start the UWB backscatter modulation necessary for ranging

[138]. Readers modulate the UWB transmitted pulses using an antipodal binary code

which allows to uniquely identify the reader (reader’s code). Each transmitted pulse

is backscattered by a tag which modulates its antenna load according to a specific

code (tag’s code). The adoption of readers’ and tags’ codes allows to discriminate

the useful signal from environmental clutter and it permits to suppress the inter-tags

interference [108]. Thus, a unique UWB tag-to-reader communication channel is

established. Note that, differently from standard Gen. 2 UHF-RFID and thanks to

the adoption of different tag’s codes, a medium access control is not necessary for

UWB multi-tag communication and ranging.

6.2.2 Bayesian OOA Estimation

The performance metrics and the Bayesian tracking for OOA estimation are now

described.

Performance Metrics

To evaluate the system’s ability to estimate the OOA of a stream of objects o, we

consider the absolute position of each object (the true position in the stream) and

the relative position with respect to the other objects (following or preceding). We

define the absolute OOA success rate Ra, the relative OOA success rate Rr, the

object detection rate Rd, and the object misdetection rate Rm, all over N trials,

16A survey on TOA estimation techniques suitable for UWB signals and exploitable in this context

can be found in [29].
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respectively as

Ra =
1

N No

N∑

n=1

|D(n)|∑

i=1

δ(o(n)[i], ô(n)[i]) (6.34)

Rr =
1

N |D(n)|

N∑

n=1

|D(n)|∑

i=1

δ(o
(n)
d [i], ô(n)[i]) (6.35)

Rd =
1

N

N∑

n=1

∣∣D(n)
∣∣

|O(n)|
(6.36)

Rm = 1− Rd (6.37)

where, for the nth trial: δ(m,n) is the Kronecker delta function; o(n)[i] is the ith

element of the true OOA vector; ô(n)[i] is the estimated vector; o
(n)
d [i] is the true

OOA vector conditional on detection; D(n) is the set of detected objects; and O(n) is

the set of objects. Consider, for example, No = 3, N = 1, o(1) = [2, 1, 3], ô = [1, 3]

that gives Rd = 2/3, and Rm = 1/3. Then, Ra = 0 because the absolute position

of all the objects in the stream is wrong due to the misdetection of the object with

index i = 2. Differently, Rr = 1 because the relative position among the detected

objects is preserved.

TOA Estimation

Once the reader receives the UWB backscattered signal, it performs TOA estimation

to determine the distance from the tag. To discriminate the signal of a specific tag

from clutter and inter-tags interference, a de-spreading operation is conducted at

reader side on the received signal, exploiting the knowledge of the tag code of interest

[108, 140]. This allows to extract the signal component due to the backscattering of

a specific tag from the received waveform [146]. At the rth reader, the round-

trip time (RTT) estimation τ̂
(k)
ij,r(p

(k)
ij ) with respect to the jth tag attached on the

ith object is obtained. From the RTT estimation, the reader-tag distance d̂
(k)
ij,r is

determined as d̂
(k)
ij,r = c τ̂

(k)
ij,r(p

(k)
ij )/2 where c is the speed of light. Note that, we

consider each reader estimating the TOA of the signal backscattered by the tag

related to the interrogation signal emitted by the reader itself; due the passive nature

of the system, other multi-static ranging and localization techniques typical of SR

can be adopted to improve the performance [137].

De-spreading and ranging based on the received signal can be implemented in

severely ways depending on the required performance and on complexity limitation at
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Figure 6.8: Absolute OOA success rate for Ru = 10Hz and different values of Ns,

∆L, and Nto.

reader side. Here, a low-complexity energy-based receiver architecture, as described

in [146, 186] is considered, in which the TOA estimate resolution is bounded by the

energy detector integration window TED. Detection and ranging performance depend

on the SNR, which is function of the reader-tag distance. The mean received power

averaged over the multipath fading at the rth reader side is given by

P
(k)
ij,r =

∫ fc+
W
2

fc−
W
2

Pt(f)G
2
t (f,Θt)G

2
r(f,Θr)(

d
(k)
ij,r

)4
Ltag

( c

4πf

)4

df (6.38)

where fc is the central frequency, W is the transmitted signal bandwidth, Pt(f)

is the transmitted one-sided PSD, Gt(f,Θ) and Gr(f,Θ) are the tag and reader

antenna gains that vary with the frequency and they are function of Θ = (θ,φ)

representing the couple of elevation and azimuthal angles specific of the reader-tag

link under consideration. Ltag accounts for tag losses and d
(k)
ij,r is the reader-tag

distance. Angles Θt and Θr are related to reciprocal tag and reader orientations,

respectively. The received SNR, at reader side, is SNR
(k)
ij,r = NsP

(k)
ij,rTf/N0, where Ns

is the number of accumulated UWB pulses [146] and Tf is the PRP. The one-sided

noise PSD N0 is given by N0 = κFT0 where F is the noise figure, T0 the reference

temperature, and κ the Boltzmann constant. In the following, a tag is considered

detected if the received SNR is above a threshold SNRth dependent on the system

parameters.

Bayesian Tracking

In relation to the signal processing techniques in 2.3, the tracking algorithm infers the

tag position p
(k)
ij (i.e., the state vector) at each time index k from a set of ranging

estimates (i.e., observations), a mobility model (i.e., relation between the current

and the prior state vectors), and the perception model (i.e., relation between the
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observations and the current state vector) [15]. Following a Bayesian approach, the

position estimate p̂
(k)
ij is determined as the value that maximizes the position belief

b(p) = p(p|τ̂ (1:k)
ij ), which is the posterior distribution of the state vector given the set

of observations τ̂
(1:k)
ij ! {τ̂ (h)ij,r s.t. r ∈ R, h = 1, 2, . . . , k}. In particular, at each time

k, τ̂
(1:k)
ij is the vector of RTT estimates and τ̂

(1:k)
ij,r is provided by the energy detector

at time k if the rth receiver detected and identified the target. Among the possible

implementations of Bayesian algorithms, we consider the PF algorithm, which can

outperform the EKF in non-Gaussian noisy observations [15].17 In particular, the

position belief at time k is represented by a set of Npar random samples (particles)

at {s(k)s }, with s = 1, 2, ..., Npar. Mobility and perception models are used to predict,

update, and resample the position belief at each k. In particular, a Gaussian mobility

model is given by

p(s(k)s |s(k−1)
s ) =

1√
2πσm,k

e
−

∥∥∥s(k)s −µ̂
(n)
k

∥∥∥
2

2σ2
m,k (6.39)

where σ2
m,k depends on the mobility of the target and µ̂

(k)
n = s

(k−1)
s +v Tu, where v is

the conveyor speed vector that is assumed known. A perception model for particles

with independent observations, is given by

p(τ̂
(k)
ij |s(k)s ) =

∏

r∈R

1√
2πσp,k

e
−

[
τ̂
(k)
ij,r

c/2−∥rr−s
(k)
s ∥

]2

2σ2
p,k (6.40)

where σ2
p,k depends on the ranging techniques and the propagation conditions.

6.2.3 Results

We first describe the operating scenario and the main system parameters. Then, we

evaluate the performance of the considered system in terms of relative and absolute

OOA success rate, as well as of object misdetection rate.

Scenario and System Parameters

We consider an UHF-UWB RFID system composed of 4 readers located on the

edge of a monitored area of length Lm = 2m and width Wm = 1.5m, with height

17 Note that, in general, the set of observations have a non-Gaussian distribution due to multipath

and clutter residual.
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1.5m with respect to the z axes, as shown in Figure 6.7. We consider streams of

|O(n)| = No = 20 with n = 1, 2, . . . , N objects, where n indicates the nth Monte-

Carlo trial and N = 100. Objects have parallelepiped shape with two possible

dimensions described by the following edge lengths: a) 0.45m, 0.22m, and 0.41m

or b) 0.58m, 0.36m, and 0.86m. Each object is equipped with a number of tags

Nto = 1, 2, . . . , 5; at most one tag per face and no tags on the bottom face. At time

index k = 0, each object is at a random position within the conveyor belt and the

bottom face laying on the conveyor is chosen randomly. Tags are at a uniformly

distributed random positions on object faces. To preserve the time resolvability

of signals correspondent to different objects, a minimum Euclidean distance ∆L is

required between two tags attached to two different objects. Results are obtained

with ∆L = 0.3, 0.5, and 0.8m. The conveyor belt has length Lc = 50∆Lm to

preserve a certain density of objects, and Wc = Wm. The conveyor speed vector

is v = [vc, 0, 0] and it is assumed known with vc = 1m/s. The same transmitting

and receiving UWB antenna is considered for both tags and readers: a 3D simulated

radiation pattern of a dipole antenna attached to a reflector has been included in

simulation. Frequency selectivity is not considered and we assume the radiation

pattern equal to its value at the central frequency fc = 4GHz. Reader antennas

presents a maximum gain of Gr(fc,Θ
(max)
r ) = 5.35 dBi while tag antennas are such

that the maximum value of Gt(fc,Θ
(max)
t )/Ltag = 3. Reader antennas are set to

have maximum gain toward the center of the monitored area, while the tag antennas

have maximum gain towards the direction orthogonal to the object face to which

the tag is attached. Wireless propagation and ranging errors are modeled based on

geometric visibility. In particular, for a given reader, each tag is assumed undetected

when it is in NLOS condition with respect to the reader (i.e., another object obstruct

the reader-tag signal path) or when it is in LOS condition with the reader and the

signal is received with SNR
(k)
ij,r ≤ SNRth, where SNRth is a threshold corresponding

to the received SNR when the tag is at a distance of 6m, antennas are oriented in

the direction of the maximum gain and Np = 8192.18 If a tag is detected, we assume

a TOA estimation error uniformly distributed in [−1, 1] ns.19 Results are obtained

considering a maximum update rate Ru = 5, 10, and 15Hz. The tracking algorithm

is based on PF with Npar = 100, σ2
p,k = 1 for all k, and a value of σ2

m,k chosen such

18This distance has been measured considering these parameter within the European project

SELECT (www.selectwireless.eu).
19This corresponds to an energy detector with TED = 2ns.
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Figure 6.9: Relative OOA success rate and object detection rate for Nto = 3, ∆L =

0.5m, and different values of Ns and Ru.

Rm Rr

Nto ∆L = 0.3m ∆L = 0.5m ∆L = 0.8m ∆L = 0.3m ∆L = 0.5m ∆L = 0.8m

1 0.53 0.43 0.32 0.42 0.55 0.68

2 0.29 0.16 0.08 0.57 0.80 0.91

3 0.15 0.06 0.01 0.65 0.87 0.98

4 0.08 0.02 0 0.66 0.91 0.99

5 0.05 0.01 0 0.69 0.91 1

Table 6.1: Relative OOA success rate and misdetection rate for Ns = 2048 and

different values of Nto and ∆L.

that the nth estimated particle at time k is within a circle centered at µ̂
(k)
n of radius

|v̂k| TL .

Numerical Results

Figure 6.8 shows the absolute OOA success rate for Ru = 10Hz, various Nto, ∆L,

and Ns. It can be seen that, in each setting, Ra increases with Ns but with negligible

improvement for Ns > 2048. Moreover, by increasing ∆L the absolute OOA success

rate becomes more sensitive to the number of tags per object. For example, varying

Nto from 1 to 5 increases Ra from 0.03 to 0.08 when ∆L = 0.3m, whereas it increases

Ra from 0.02 to 0.20 when ∆L = 0.8m. This is because decreasing the distance

between two tags attached to two different objects strongly limits the detection rate

by increasing the number of NLOS conditions between readers and tags.

Figure 6.9 shows the relative OOA success rate Rr and the object detection rate

Rm for ∆L = 0.5m, Nto = 3 , and various ∆L and Ns. It can be seen that the

detection rate is more sensitive to the number of collected pulses than the update

rate. For example, varying the update rate from Ru = 5Hz to Ru = 15 changes Rd

from 0.52 to 0.56 with Ns = 128, while it changes from 0.52 to 0.86 by increasing
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Ns from 128 to 512 when Ru = 5Hz. Differently, the relative OOA success rate is

very sensitive to the update rate, especially when the number of pulses is low. For

example, varying the update rate from Ru = 5Hz to Ru = 10 changes Rr from 0.06

to 0.52. However, a floor is experienced for Ru > 5Hz. Note that this parameter

and the floor is strictly related to the monitored area dimension and the speed of

the conveyor. Similarly to Figure 6.8 the effects of the number of collected pulses

becomes negligible for Ns > 2048 for both Ra and Rm. This is due to the fact that

the number of collected pulses influences the Rd more than the localization accuracy.

The table in Figure 6.1 gives the the relative OOA success rate Rr and misde-

tection rate Rm for Ns = 2048 and different values of Nto and ∆L. Note that, even

when the number of detected object is above the 95%, increasing the number of tags

per object is less effective than increasing the distance between two tags ∆L for the

OOA performance. Moreover, increasing the number of tags above 3 has negligible

effects on Rr, while it improves significantly the detection rate, especially when the

distance between tags ∆L is short.
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Chapter 7

Conclusion

The statistical modeling and algorithm design of wireless localization systems have

been explored, with particular regard to semi-passive and passive systems (i.e., lo-

cation and tracking of non-collaborative targets, passive radar systems that use sig-

nals of opportunity, and wireless systems for the identification and localization of

semi-passive tag devices embedded in objects). The research activity has been also

conducted within the framework of international projects in collaboration with other

universities and companies.

A mathematical model for the range information is derived as a function of wire-

less environment, signal features, and energy detection techniques. Such a model is

tractable and serves as a cornerstone for the design and analysis of wideband rang-

ing systems enabling soft-decision and hard-decision localization. Using the proposed

range information model, we have obtained explicit expressions for the range likeli-

hood and range estimate, as well as the distribution of the range estimation error.

These expressions form the basis for the design of the energy detector according to a

variety of optimization criteria and physical constraints. A case study of a localiza-

tion network operating in a wireless environment is presented and its performance, in

terms of ranging and localization accuracy, is evaluated. The accuracy of the anal-

ysis is confirmed by sample-level simulations. The results show that soft-decision

localization requiring only the knowledge of channel statistics can significantly out-

perform hard-decision localization. The proposed range information model provides

a new perspective on range-based localization in wireless environments.

The intrinsic properties of sensor radar networks and the representativeness of

their observations determine the localization accuracy, especially in harsh propa-

gation environments. Blind methods for observation selection have been proposed

115
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based on features extracted from the received waveforms. Our methodology inspects

the network setting, propagation environment, waveform processing, observation se-

lection, and localization algorithm in an absence of prior information. It shows the

importance of selecting representative observations for high localization accuracy in

NLOS conditions, especially by adopting the appropriate selection features. In fact,

in addition to a reduction in the overall localization complexity, observation selection

significantly improves the performance in the presence of obstacles. The localization

performance of a network of UWB SRs operating in an indoor environment with mul-

tipath, clutter, and obstructions has been determined based on the proposed methods

for observation selection and signal processing. Results show that, in the presence of

obstructions due to walls, the proposed selection methods strongly improve the lo-

calization accuracy. For example, the localization error outage at 1m improves from

93% without observation selection to 23% with the proposed observation selection

method.

The effects of radar networking and signal processing on the tracking accuracy

of SRs operating in indoor environments have been characterized. The results show

that submeter accuracy can be achieved with a proper allocation of resources for the

different tasks. In particular, deploying more than three sensors per room increases

the network cost without contributing significantly to localization accuracy. The

monostatic SRs perform better than the multistatic ones when resources are severely

limited, while the multistatic SRs perform better than the monostatic ones not when

ample resources are available. Moreover, a smart selection of available observations

can improve performance, especially when a large number of sensors is deployed.

The results provide guidelines for the joint design of the radar network, waveform

processing, and tracking algorithm for inferring the position of moving targets in

indoor scenarios. A passive radar system based on LTE signals of opportunity has

been proposed. A Bayesian framework for tracking mobile targets and estimating

their velocity within a monitored environment has been developed. The performance

is quantified for a case study accounting for the LTE extended pedestrian model

with various network, propagation, and processing settings. Results show that the

mitigation of static clutter and of direct signals plays a very important role on the

tracking accuracy.

The detection of multiple semi-passive RFID tags adopting impulsive backscat-

tered signals is also addressed The design of multi-tag detection and tag codes is

developed in the presence of interference, wake-up synchronization offset, and clock
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drift. The system performance in terms of detection and false alarm rate is deter-

mined for different code families in various scenarios. An UHF-UWB RFID system

enabling OOA estimation for a stream of objects has been presented. The OOA

estimation performance metrics has been defined to evaluate the effects of RFID

configurations and signal processing techniques on the performance for a succession

of objects moving on a conveyor belt. The results based on particle filtering show

a success rate greater than 99% can be achieved with a proper setting of ranging

technique, localization update rate, and number of tags per object. In particular,

the minimum distance between tags attached to two different objects strongly affects

the performance even when a high number of particles is used.
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