Advanced transceivers for spectrally-efficient communications

Andrea Modenini

SPADiC Lab
Dept. of Information Engin.
University of Parma
Parma, Italy

June 20th, 2014
Outline

1. Introduction
2. Channel shortening
3. Time packing
4. Satellite channel
5. Spectrally-efficient communications over the satellite channel
6. Publications

Advanced transceivers for spectrally-efficient communications
Outline

1. Introduction
2. Channel shortening
3. Time packing
4. Satellite channel
5. Spectrally-efficient communications over the satellite channel
6. Publications
THE MISSION: maximize the achievable spectral efficiency

\[\eta = \frac{I_R}{TW} \text{ [bit/s/Hz]} \]

where
- \(T, W \) are respectively the symbol time and the reference bandwidth
- \(I_R \) is the achievable information rate.
Information rate:

\[I(c; r) = \mathbb{E}\{-\log_2 p(r)\} - \mathbb{E}\{-\log_2 p(r|c)\} \] \hspace{1cm} (1)

Achievable information rate:

\[I_R = \mathbb{E}\{-\log_2 q(r)\} - \mathbb{E}\{-\log_2 q(r|c)\} \] \hspace{1cm} (2)

where

- \(c, r \) are respectively the transmitted symbols and the observable
- \(p(r|c) \) is the channel law, and \(p(r) = \sum_c p(r|c)P(c) \)
- \(q(r|c) \) is the channel law considered at the detector, and \(q(r) = \sum_c q(r|c)P(c) \)
What are we going to do?

- **Receiver**: channel shortening.
- **Transmitter**: optimization of the transmit filter and time-frequency packing technique.
- **Transceiver**: we will combine all the presented techniques. We will consider, as example, their application to the satellite channel.
Outline

1. Introduction
2. Channel shortening
3. Time packing
4. Satellite channel
5. Spectrally-efficient communications over the satellite channel
6. Publications

Advanced transceivers for spectrally-efficient communications
Let us consider a discrete-time ISI channel $H(\omega)$

Optimal detection adopts

$$H^r(\omega) = H(\omega), \quad G^r(\omega) = |H(\omega)|^2$$

and has complexity $\mathcal{O}(M^\nu)$.

We consider detectors with memory $L < \nu$. How we should set $H^r(\omega)$ and $G^r(\omega)$?

$$I_{OPT} = \max_{H^r, G^r} I_R$$

The optimization problem can be a hard task. However it can be solved for Gaussian input [1].

Let us consider a discrete-time ISI channel $H(\omega)$

- **Optimal detection** adopts $H^r(\omega) = H(\omega)$, $G^r(\omega) = |H(\omega)|^2$

and has complexity $\mathcal{O}(M^\nu)$.

- We consider detectors with memory $L < \nu$. How we should set $H^r(\omega)$ and $G^r(\omega)$?

$$I_{\text{OPT}} = \max_{H^r, G^r} I_{\text{R}}$$

The optimization problem can be a hard task. However it can be solved for Gaussian input [1].

Channel shortening: a numerical example

Figure: AIRs of the CS detector on the EPR4 channel for BPSK modulation.
Our contribution

- Adaptive channel shortening
- Optimized transmit filter for CS detector
- Extension to MIMO-ISI channels
 - AWGN channel: CS detector and optimal shaping pulse
 - FDM: CS detector

Due to a lack of time we will shortly describe only the Optimal transmit filter for CS detector.
We now assume that the transmitted symbols are a precoded version of the information symbols.

Optimization problem

\[
\max_{P(\omega)} I_{OPT}
\]

such that

\[
\int_{-\pi}^{\pi} |P(\omega)|^2 d\omega = 2\pi.
\]

Solution

\[
|P(\omega)|^2 = \max \left(0, \frac{N_0}{\sqrt{|H(\omega)|^2}} \sqrt{\sum_{\ell=-L}^{L} A_\ell e^{i\ell\omega} - \frac{N_0}{|H(\omega)|^2}} \right)
\]

where \(A_\ell \) have Hermitian symmetry.
Channel shortening: numerical results

Figure: AIRs for BPSK modulation when different values of the memory L are considered at receiver.
Channel shortening: numerical results

Figure: Bit error rate for BPSK modulation, 64,800 DVBS2 LDPC code with rate 1/2, for different values of the memory L considered at receiver.
1 Introduction

2 Channel shortening

3 Time packing

4 Satellite channel

5 Spectrally-efficient communications over the satellite channel

6 Publications

Advanced transceivers for spectrally-efficient communications
Time packing

What we usually do...

\[p(t) \quad p(t - T) \quad p(t - 2T) \]

...and what we could do

\[\text{PSD} \quad f \]

Advanced transceivers for spectrally-efficient communications
What’s the point?

\[\eta = \frac{I_R}{TW} \]
Time packing

Original faster-than-Nyquist

- In FTN, T is selected as the smallest value giving no reduction of the minimum Euclidean distance with respect to the Nyquist case [2].
- Extended to both time and frequency by Rusek and Anderson [3].

Time-frequency packing

- We use low-complexity receivers
- We accept a degradation of the information provided the spectral efficiency is increased
- In other words, if we keep the same code, the performance degrades but an improvement is obtained by using a code with lower rate (higher overhead)

Time packing: numerical results

Figure: ASE for 8PSK with a RRC pulse having $\alpha = 0.2$.

Advanced transceivers for spectrally-efficient communications
Figure: ASE for time packing and CS detection when the modulation is QPSK, with Gray mapping and RRC pulse $\alpha = 0.2$.
Outline

1 Introduction
2 Channel shortening
3 Time packing
4 Satellite channel
5 Spectrally-efficient communications over the satellite channel
6 Publications

Advanced transceivers for spectrally-efficient communications
Introduction Channel shortening Time packing Satellite channel SE comm. Publications

Satellite channel

\[\sum_k c_k p(t - kT) \]

\[h_i(t) \rightarrow \text{Satellite transponder} \rightarrow HPA \rightarrow h_o(t) \]

\[s(t) \rightarrow w(t) \rightarrow r(t) \]

Figure: Block diagram of the satellite channel.

Advanced transceivers for spectrally-efficient communications
A suitable approximate model is based on a *simplified Volterra-series expansion* [4].

- PSK modulations: the model reduces to a linear AWGN channel. ⇒ CS detector for AWGN continuous-time channels.
- APSK modulations: the model reduced to a MIMO-ISI channel. ⇒ CS detector for MIMO-ISI channels.

Satellite channel

- A suitable approximate model is based on a simplified Volterra-series expansion [4].

- PSK modulations: the model reduces to a linear AWGN channel. ⇒ CS detector for AWGN continuous-time channels.

- APSK modulations: the model reduced to a MIMO-ISI channel. ⇒ CS detector for MIMO-ISI channels.

Satellite channel

- A suitable approximate model is based on a *simplified Volterra-series expansion* [4].
- PSK modulations: the model reduces to a linear AWGN channel. ⇒ CS detector for AWGN continuous-time channels.
- APSK modulations: the model reduced to a MIMO-ISI channel. ⇒ CS detector for MIMO-ISI channels.

Outline

1. Introduction
2. Channel shortening
3. Time packing
4. Satellite channel
5. Spectrally-efficient communications over the satellite channel
6. Publications
Spectrally-eff. comm. over the sat. channel

Satellite transponder for user with $\ell = 0$

from adjacent transponders

Figure: System model.
Figure: Spectral efficiency of DVB-S2 modulations with roll-off 0.2, data predistortion, and memoryless detection. Comparison with a constellation of increased cardinality (64APSK).
Spectral-eff. comm. over the sat. channel

Figure: Spectral efficiency of TF packing with bandwidth optimization (TF pack., W_{opt}). Comparison with DVB-S2, 64APSK and roll-off reduction.
Spectrally-efficient communication over the satellite channel

Figure: Modcodes of TF packing with bandwidth optimization (TF pack., W_{opt}). Comparison with DVB-S2.
Outline

1 Introduction
2 Channel shortening
3 Time packing
4 Satellite channel
5 Spectrally-efficient communications over the satellite channel
6 Publications
Journals

Publications

Conferences

Patents