

On the design of incentive mechanisms in wireless networks: a game theoretic approach

Dottorando: Luca Canzian Ciclo: XXV Indirizzo: ICT Supervisore: Michele Zorzi

- New design challenges
- Applications
 - Channel access
 - Flow control
- Conclusions

- New design challenges
- Applications
 - Channel access
 - Flow control
- Conclusions

Mobile communications trend

- Mobile communications grow exponentially
- Future wireless networks must manage dynamically and efficiently a large set of devices
- Networks are migrating towards more
 distributed approaches, shifting intelligence from
 the core network towards the edges of the network

Global Mobile Data Traffic Growth	
2009	140%
2010	159%
2011	133%
2012 (estimate)	110%
2013 (estimate)	90%
2014 (estimate)	78%

A new design methodology

Terminals are more autonomous, more powerful, and more programmable

Issue: what if they are programmed to accomplish a personal objective?

 \rightarrow a new design approach:

Distributed schemes for strategic users: the designer must provide the incentive for the users to take efficient decisions

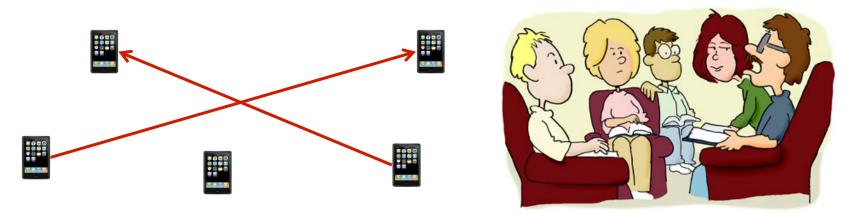
Game theoretic approaches

Game theory is the branch of mathematics studying interactions between decision-makers

Common assumption: users are selfish and strategic, they act to maximize their own utility

Nash Equilibrium (NE)

- Existence?
- Computation?
- Uniqueness?
- Efficiency?



- New design challenges
- Applications
 - Channel access
 - Flow control
- Conclusions

Slotted-Aloha MAC protocol

JNIVERSITY OF PADOVA

- Time is slotted and slots are synchronized
- The users contend for the channel
- A packet is received if does not collide
- i selects the transmission probability p_i
- i's throughput: $T_i(p) = p_i \prod_{i \neq j} (1 p_j)$

Users adopt the always transmit strategy \rightarrow network collapse

Users pay for their resource usage

Assumptions:

- i's utility: $U_i(p) = \theta_i \ln T_i(p) c_i p_i$
- Design objective: max sum-utility

Design problem: compute the optimal unit price c_i

Results: • Given c_i , the unique NE is $p_i^{NE} = \frac{\theta_i}{c_i}$

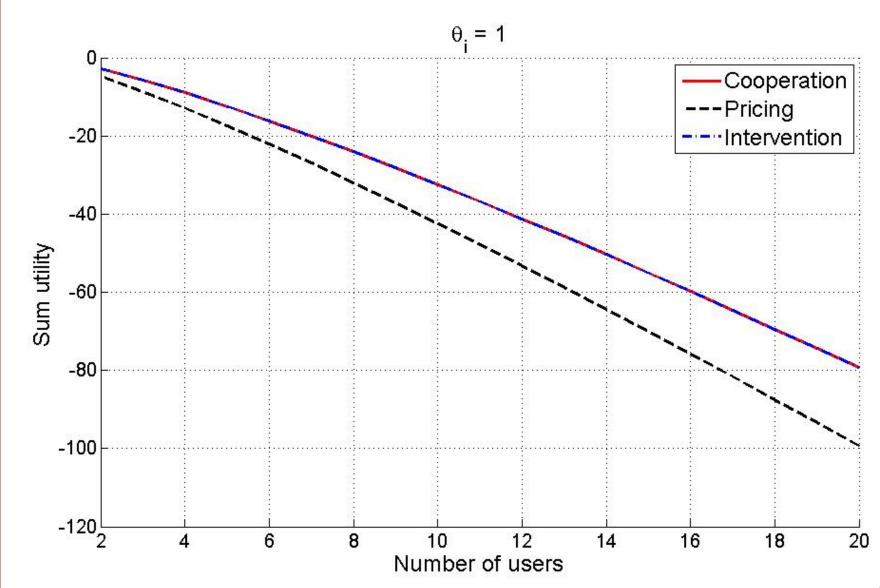
FREE

10 \$

• Optimal pricing policy is $c_i = \sum \theta_k$

Intervention scheme

An intervention device is placed in the system, it can affect users' resource usage


Intervention rule: a function of the users' actions \rightarrow users' utilities can be shaped

Design problem: compute the optimal rule

Results:

• For the affine intervention rule class, the NE and the optimal rule are analytically computed

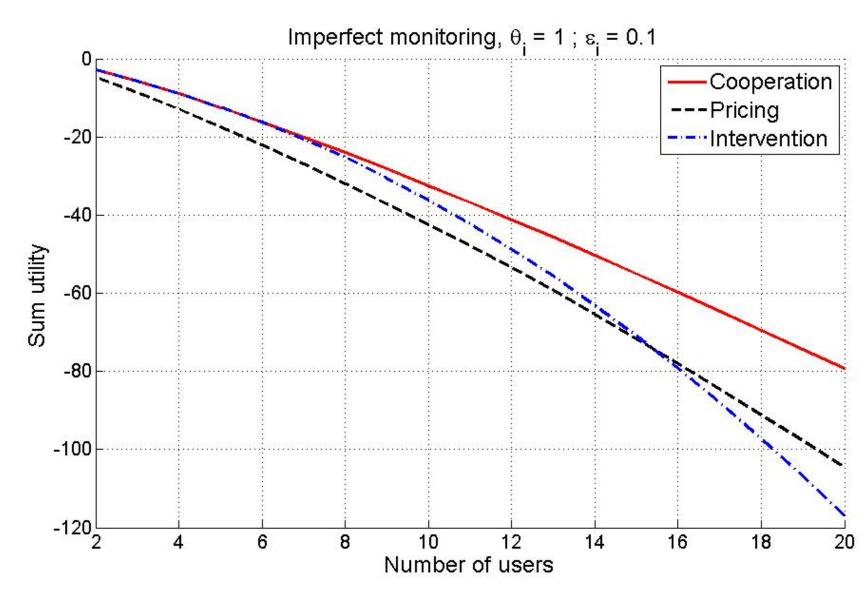
DEPARTMENT OF INFORMATION ENGINEERING

Imperfect monitoring case

The proposed schemes charge / intervene based on the actions adopted by the users **Problem:** what if the users' actions are not perfectly observable?

Imperfect monitoring model: $\hat{p}_i = [p_i + n_i]_0^1$ where: $n_i \sim \mathcal{U}[-\epsilon_i, \epsilon_i]$

Results:

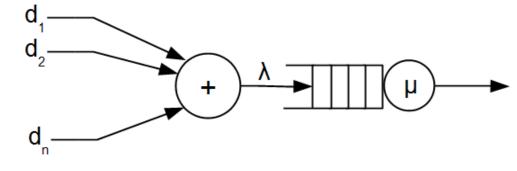


• The NE and the best policies (pricing & intervention) are analytically computed

Sum utility, imperfect monitoring

RTMENT OF

- New design challenges
- Applications
 - Channel access
 - Flow control
- Conclusions

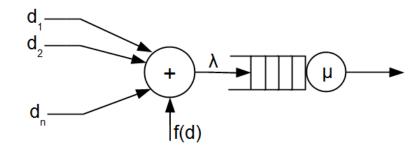

- n users
- d_i rate user i
- service rate µ
- M/M/1 queue
- arrival rate $\lambda = \sum_{i=1}^{n} d_i$

Utility user i:

$$U_i(d, t_i) = \frac{\text{throughput}^{t_i}}{\text{average delay}} = d_i^{t_i} \left(\mu - \lambda\right)$$

Utility designer:

$$U_0(d,t) = \sqrt[n]{\prod_{i=1}^n U_i^+(d,t_i)}$$

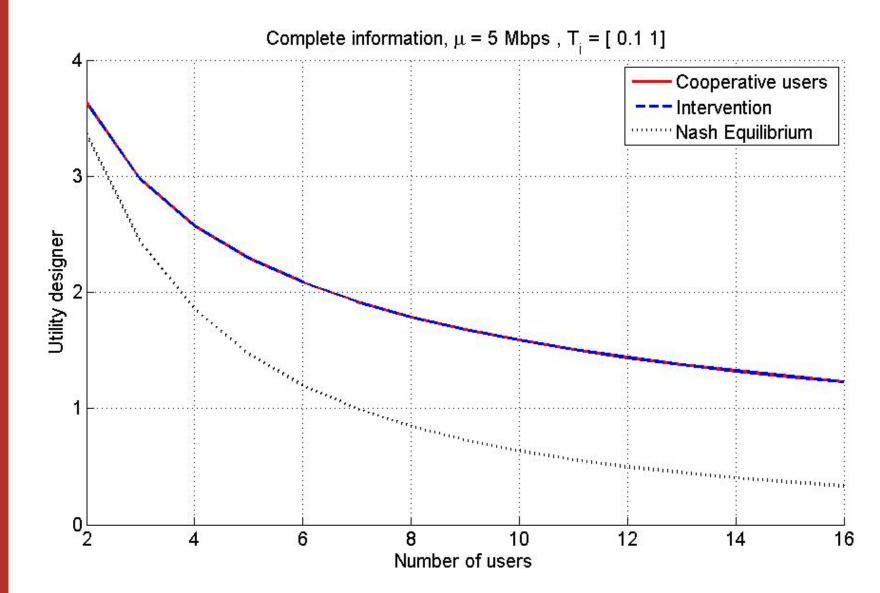


Optimal policy:

$$d_i^*(t) = \frac{t_i \mu}{n + \sum_{k=1}^n t_k}$$

Complete information scenario

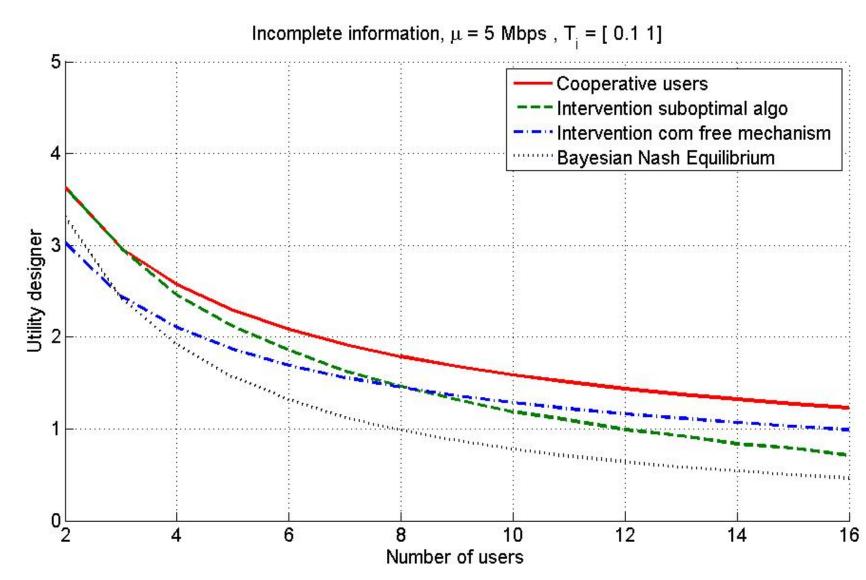
The intervention device sends an additional flow of packets with rate given by the intervention rule f(d)


Design problem: compute the optimal rule f(d)

Results:

• For the affine intervention rule class, the NE and the optimal rule are analytically computed

DEPARTMENT OF Complete information results


In the initialization phase the device asks the users to report their types...will they be honest?

Yes, if the scheme is *incentive compatible (IC)* !!!

Results:

- We characterized the maximum efficiency IC scheme
- We derived sufficient condition for its existence
- We proposed two suboptimal IC schemes
 - Convergent algorithm
 - Communication free mechanism

Incomplete information results

- New design challenges
- Applications
 - Channel access
 - Flow control
- Conclusions

- Networks require more distributed approaches, in which terminals are more autonomous and smart
- New design challenges: provide the incentive for the users to comply
- Applications to relay network, channel access, flow control
- Sometimes we can reach optimal performance (e.g., channel access perfect monitoring, flow control complete information), sometimes we can not
- But an accurate design is always able to prevent higher inefficiencies

- 1. L. Anchora, L. Badia, L. Canzian, and M. Zorzi, "A Characterization of Resource Allocation in LTE Systems Aimed at Game Theoretical Approaches", in *Proc. IEEE CAMAD 2010*
- 2. L. Canzian, A. Zanella, and M. Zorzi, "Overlapped NACKs: Improving Multicast Performance in Multi-access Wireless Networks", in *Proc. IEEE PerGroup 2010*
- 3. O. Pozzobon, L. Canzian, A. Dalla Chiara, and M. Danieletto, "Antispoofing and open GNSS signal authentication with signal authentication sequences", in *Proc. NAVITEC 2010*
- 4. L. Canzian, L. Badia, and M. Zorzi, "Relaying in Wireless Networks Modeled through Cooperative Game Theory", in *Proc. IEEE CAMAD 2011*
- 5. G. Quer, F. Librino, L. Canzian, L. Badia, and M. Zorzi, "Using Game Theory and Bayesian Networks to Optimize Cooperation in Ad-Hoc Wireless Networks", in *Proc. IEEE ICC 2012*

DEPARTMENT OF INFORMATION INGINEERING INVERSITY OF PADOVA

- 1. L. Canzian, L. Badia, and M. Zorzi, "Promoting Cooperation in Wireless Relay Networks through Stackelberg Dynamic Scheduling", *IEEE Trans. Commun.*, vol. 61, no. 2, 2013
- 2. L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar, "Intervention with Private Information, Imperfect Monitoring and Costly Communication", *to appear in IEEE Trans. Commun.*
- 3. L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar, "Intervention with Complete and Incomplete Information: Application to Flow Control", to appear in IEEE Trans. Commun.
- 4. G. Quer, F. Librino, L. Canzian, L. Badia, and M. Zorzi, "Inter-Network Cooperation exploiting Game Theory and Bayesian Networks", *to appear in IEEE Trans. Commun.*
- 5. L. Canzian, Y. Xiao, M. Zorzi, and M. van der Schaar, "Game Theoretic Design of MAC Protocols: Pricing and Intervention in Slotted-Aloha", submitted to IEEE/ACM Trans. Networking

On the design of incentive mechanisms in wireless networks: a game theoretic approach

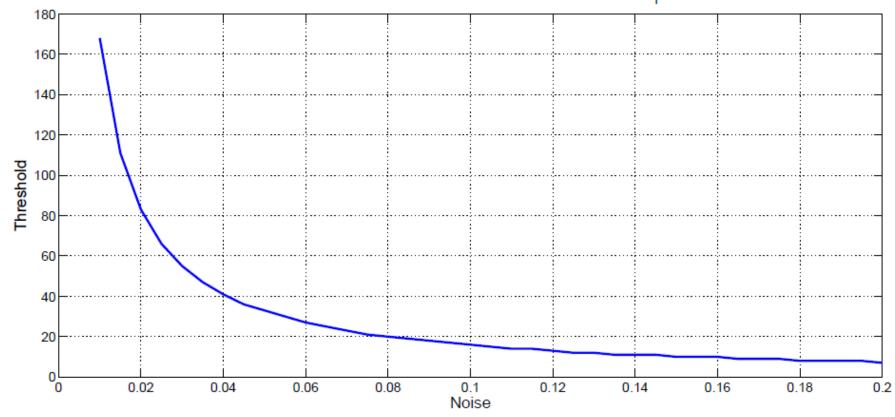
Dottorando: Luca Canzian Ciclo: XXV Indirizzo: ICT Supervisore: Michele Zorzi

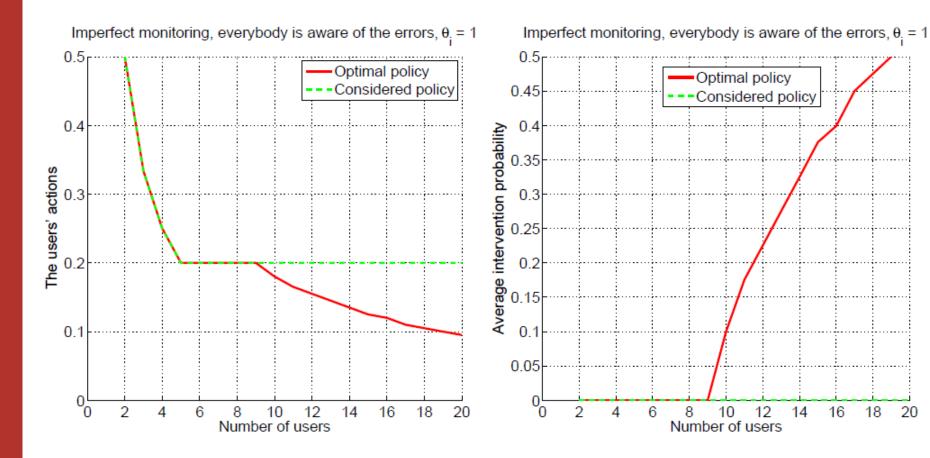
Mathematical details: intervention perfect monitoring

The intervention device jams i's packets with probability given by the intervention rule

$$f_i^I(p_i) = [r_i(p_i - \tilde{p}_i)]_0^1$$

Design problem: compute the optimal rule r_i , $ilde{p}_i$

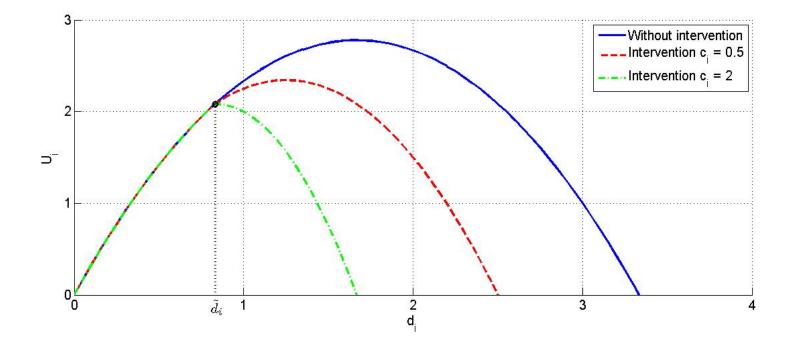

If
$$r_i \geq \frac{1}{\tilde{p}_i}$$
, the best NE is: $p_i = \tilde{p}_i$
Optimal rule: $r_i \geq \frac{1}{\tilde{p}_i}$, $\tilde{p}_i = \frac{\theta_i}{\sum_k \theta_k}$


Threshold vs. - imperfect monitoring scenario

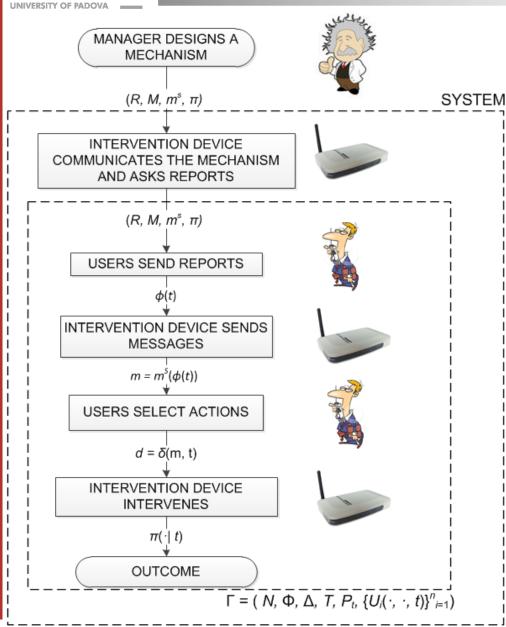
Imperfect monitoring, everybody is aware of the errors, $\theta_i = 1$

The action of the users and the device – imperfect monitoring

Optimal action profile vs. NE action profile complete info scenario



28



The effect of the affine intervention rule complete info scenario

$$f(d) = \left[\sum_{i=1}^{n} c_i (d_i - \tilde{d}_i)\right]_0^{d_0^M}$$

EPARTMENT OF ENGINEERING

Given the mechanism (R, M, m^S, π)

User interaction modeled through the game

$$\Gamma = \left(\mathcal{N}, \Phi, \Delta, T, P_t, \left\{\overline{U}_i(\cdot, \cdot, t)\right\}_{i=1}^n\right)$$

Report strategy $\phi_i: T_i \to R_i$

Action strategy $\delta_i: M_i \times T_i \to D_i$

Maximum efficiency mechanism

Lemma (T, M, d^S, π) is a maximum efficiency incentive compatible direct mechanism \iff

- **1**: the optimal action profile $d^*(t)$ of the game Γ_t is sustainable without intervention in Γ_t
- **2**: the suggested action profile is the optimal action profile of game Γ_t , i.e., $d^S(t) = d^*(t)$;
- **3**: the intervention rules selected with positive probability sustain without intervention $d^*(t)$
- 4: users have incentives to report their real types when they adopt the suggested action profile, i.e,

$$\sum_{\substack{t_{-i} \in T_{-i} \\ \forall i \in \{1, ..., n\}, \quad \forall \tau_i \in T_i, \quad \forall \hat{\tau}_i \in T_i, } P_t(t \mid \tau_i) U_i\left(d_0^*, d_{-i}^S(\hat{\tau}_i, t_{-i}), \hat{\delta}_i(d_i^S(t_{-i}, \hat{\tau}_i)), t\right)$$

1 is valid, **2** and **3** say how to select the mechanism, **4** is valid if, $\forall \tau_k \in T_i$ and $\forall t_{-i} \in T_{-i}$

$$\left(\frac{n+\sum_{j\neq i}t_j+\tau_{k+1}}{n+\sum_{j\neq i}t_j+\tau_k}\right)^{\tau_k+1} \left(\frac{\tau_k}{\tau_{k+1}}\right)^{\tau_k} \ge 1$$

Decoupled problem

32

Proposition

$$\overline{d}^{S} = \underset{d^{S}}{\operatorname{argmax}} \sum_{t \in T} P_{t}(t) U_{0}\left(d_{0}^{*}, d^{S}(t), t\right)$$

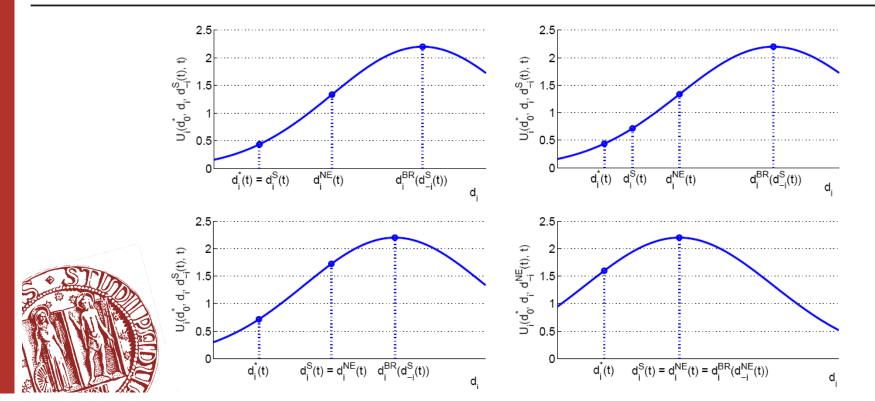
subject to:

$$\sum_{t_{-i}\in T_{-i}} P_t(t \mid \tau_i) U_i\left(d_0^*, d^S(t_{-i}, \tau_i), t\right) \ge \\ \ge \sum_{t_{-i}\in T_{-i}} P_t(t \mid \tau_i) U_i\left(d_0^*, d_{-i}^S(t_{-i}, \hat{\tau}_i), \hat{\delta}_i(d_i^S(t_{-i}, \hat{\tau}_i)), t\right)$$

 $\forall \, i \in \left\{1,...,n\right\}, \ \forall \, \tau_i \in T_i, \ \forall \, \hat{\tau}_i \in T_i, \ \forall \, \hat{\delta}_i : D_i \to D_i$

 $\begin{array}{ll} \text{and} & \forall \, t \in T \ , \\ \\ \overline{\pi} \left(f \mid t \right) = \left\{ \begin{array}{ll} 1 & \text{for a certain } f \in \mathcal{F}^{\overline{d}^S, t} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$

describe an optimal mechanism, and the affine intervention rules is optimal with respect to $_{\Gamma}$



Proposed algorithm

Algorithm 2 Flow control suboptimal algorithm.

- 1: Initialization: $\forall t \in T, d^{S}(t) = d^{*}(t), \pi(\tilde{f} \mid t) = 1$ for a certain $\tilde{f} \in \mathcal{F}^{d^{S}, t}$ and $\pi(f \mid t) = 0$ for $f \neq \tilde{f}$.
- 2: **For** s = 1 : m
- 3: **For** l = 1 : m
- 4: If $W_i(\tau_s, \tau_s) < W_i(\tau_s, \tau_l)$

- $d_i^S(\tau_l, t_{-i}) \leftarrow \min\left\{d_i^S(\tau_l, t_{-i}) + \epsilon_i, \ d_i^{NE^0}(\tau_l, t_{-i})\right\}, \ \pi(\tilde{f} \mid t) \leftarrow 1 \text{ for a certain } \tilde{f} \in \mathcal{F}^{d^S, t} \text{ and}$
- $\pi(f \mid t) = 0 \text{ for } f \neq \tilde{f}, \, \forall t_{-i} \in T_{-i}$
- 6: Repeat from 2 until 3 is unsatisfied $\forall s$ and l

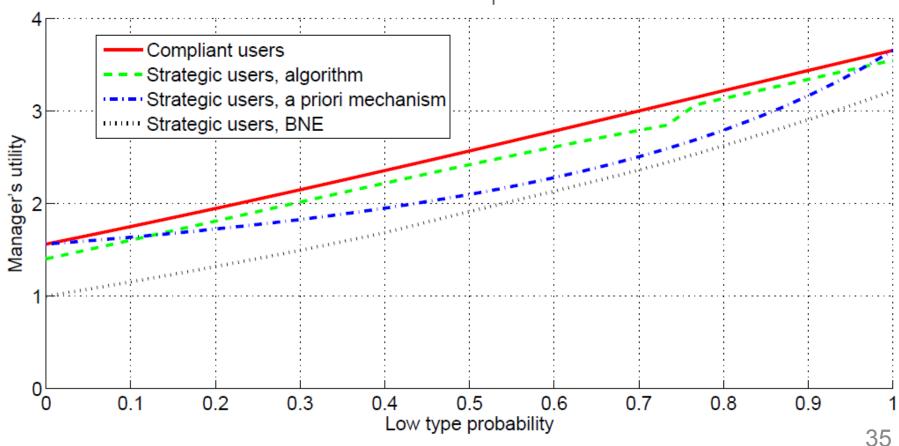
33

Proposed a priori mechanism

A priori mechanism: independent on users reports

Proposed a priori mechanism: Suggested action profile \overline{d} and intervention rule

$$f(d) = \left[\sum_{i=1}^{n} c_i (d_i - \overline{d}_i)\right]_0^{d_0^M} , \ c_i > \frac{\tau_m \left(\mu - \sum_{k=1}^{n} \overline{d}_k\right) - \overline{d}_i}{\overline{d}_i} , \ d_0^M \ge \mu$$


Where \overline{d} is the solution of the convex problem:

$$\underset{d}{\operatorname{argmin}} - \ln \left(\mu - \sum_{i=1}^{n} d_{i} \right) \mathbb{E}_{t} \left[\prod_{i=1}^{n} d_{i}^{\frac{t_{i}}{n}} \right]$$
$$d_{i} \geq 0 \ , \ d_{i} \leq \mu \ , \ \forall i \in \mathcal{N}$$

Manager's expected utility vs. low type probability incomplete information scenario

n = 4, $\mu = 5$, $T_i = [0.1 1]$