International Doctorate School in Information and Communication Technologies

University of Modena and Reggio Emilia

Localization and Tracking for Indoor Environments

Francesco Montorsi, PhD

Curriculum: Electronics and Telecommunications
Tutor: Prof. G.M. Vitetta
Co-Tutor: Prof. F. Pancaldi

Ancona, 24-26 Giugno 2013
Outline of This Presentation

- Technologies and Techniques for Positioning

- **Modelling** based on Experimental Measurements:
 - UWB NLOS bias modelling
 - RSS measurements modelling

- **Localization** Algorithms:
 - Low-complexity Localization Algorithms

- **Navigation** Algorithms:
 - An INS for Low-Cost IMUs
 - Turbo Filtering

- Conclusions
Technologies and Techniques for Positioning
Technologies and Techniques for Positioning

Terrestrial real-time localization systems

- Active
 - Wireless
 - Fine-grained localization
 - Proximity-based localization
 - Radio (UWB, ad-hoc networks, WLAN, Bluetooth, Zigbee)
 - Acoustic (ultrasound)
 - Radio (RFID)
 - Acoustic (ultrasound beacons)
 - Optical (infrared beacons)
 - Wired

- Passive
 - Radio (RADAR)
 - Acoustic (SONAR)
 - Optical (LIDAR, video cameras)

- INS systems
Modelling based on Experimental Measurements:
UWB NLOS bias modelling
UWB-based Localization and NLOS Bias

Scenario: Indoor radiolocalization systems based on Time Of Arrival (TOA) measurements between radios with fixed, known positions (anchors) and a mobile station (agent):

Problem:
- Non Line Of Sight (NLOS) propagation results in biased TOA estimation (obstructions slow down electromagnetic waves, so that the estimated TOA is larger than the true distance / speed of light).

Approach:
- A measurement campaign has been carried out to assess the correlation between NLOS bias and some features extracted from received signals.
TOA model adopted: \(\tau = \frac{d}{c_0} + b + n \)
\[\downarrow \]
Real TX-RX distance
\[\downarrow \]
NLOS bias (r.v.)
Gaussian noise r.v.

APPROACH:
- For each measured link various features have been extracted: maximum signal amplitude, mean excess delay, rms delay spread, energy, rise time, kurtosis (the employed radios were able to store the received waveform).

RESULT:
- NLOS bias for TOA UWB waveforms is strongly correlated with some of the considered features; this can be exploited to *infer* and *mitigate* the bias!
Localization Algorithms

APPROACH:
- We have proposed *estimators* of the agent position which:
 - exploit the joint *multidimensional* pdf resulting from experimental acquisitions (histograms or multidimensional fitting polynomials have been used to represent this function);
 - exploit the TOA vectors from all available links.

RESULTS:
- We have found that this approach, on the average, provides performance improvements in radio localization accuracy; however, it is difficult to *consistently* achieve such improvements.
- NLOS bias *detection* is more robust than NLOS bias *mitigation* in environments characterized by strong multipath propagation.
Modelling based on Experimental Measurements:

RSS measurements modelling
Localization with RSS Measurements

SCENARIO: indoor radiolocalization systems based on Received Signal Strength (RSS) measurements between radios with fixed, known positions (anchors) and a mobile station (agent):

PROBLEM:
- **Non Line Of Sight (NLOS)** propagation results in *biased* RSS estimation. In fact, obstructions introduce attenuation which is not accounted for by the traditionally-employed free-space propagation law; this strongly degrades localization accuracy.

APPROACH:
- A measurement campaign has been carried out to 1) assess the attenuation in RSS due to indoor obstructions (mainly walls) and 2) develop a *map-aware* statistical model for RSS measurements.
RSS Measurement Campaign

- 169 MHz radios transmitting at +15dBm have been employed, so that the effect of signals propagating through multiple walls could be studied (up to 10 walls)

- The RSS has been acquired in many different positions inside the 2nd floor of the DII building:

![Diagram of RSS Measurement Campaign](image-url)
Based on experimental evidence, a novel map-aware statistical model for the acquired measurements has been developed:

\[f(z|\tilde{p}) = \prod_{i\in Z} \mathcal{N}(z_i; d_i(\tilde{p}), \mu_{b,0}^{\text{RSS}}, \mu_{b,m}^{\text{RSS}} N_0(\tilde{p}, \tilde{p}_i^{\text{a}})) u_{N_0}, \]

such a statistical model represents the likelihood of obtaining a certain set of RSS measurements for a given (trial) agent position; searching for the trial position which corresponds to the maximum value of the likelihood produces an **optimal estimate** (in ML sense) of the agent position.
RSS Map-aware vs Map-unaware Model

- In the same scenario a map-aware model and a map-unaware model lead to substantially different likelihoods:

![Map-aware log-likelihood function](image1)

![Map-unaware log-likelihood function](image2)

- Anchors
- True agent position
- Peak of the likelihood
RESULTS:
A comparison between map-aware and map-unaware localization algorithms processing the RSS measurements stored in our experimental database shows that the former algorithms are, on the average, 64% more accurate (in terms of RMSE) than the latter ones:
Localization Algorithms:
Low-complexity Localization Algorithms
Algorithm Complexity as FLOPs

PROBLEM:
- Map-aware modelling improves accuracy in localization systems but requires more complex estimators.

APPROACH:
- Complexity of map-aware localization algorithms needs to be quantified. Complexity depends on a) type of estimator employed, b) models employed, c) implementation of the estimator and d) the required accuracy in computations.

- Computational complexity is difficult to analyse and quantify whenever non-linear algebra is involved (e.g., this occurs when the RSS statistical modelling described above is used).

- We decided to adopt a mixed simulation/analytical approach which allows to count the different types of floating-point operations (FLOPs): multiplications, divisions, square roots, etc. and weight them differently.
Based on our complexity results, two novel low-complexity localization algorithms have been developed:

1. **A distance-reduced domain (DRD) estimator**: it is based on the fact that localization can be split in two phases: a) a raw (map-unaware) estimation reducing the search domain and a b) fine (map-aware) estimation.

2. **A probability-reduced domain (PRD) estimator**: it is based on the fact that complexity can be reduced by: a) evaluating the likelihood in selected points of a given map and b) shrinking the search domain around the most-likely positions found in step a).

In addition, for localization algorithms involving the search for minima in non-convex functions, several state-of-art direct-search optimizers have been tested: active-set, iterative grid search, iterative compass search.
RESULTS:

Accuracy (RMSE)

- DRD and PRD variants offer an accuracy close to that of map-aware algorithms but require a lower complexity (on the average 13 times smaller).
Navigation Algorithms:
An INS for Low-Cost IMUs
CONTEXT:

- **Inertial measurements units (IMUs)** based on MEMS are low-cost sensors which can be used in **Inertial Navigation Systems (INS)** for indoor/outdoor pedestrian dead-reckoning.

- MEMS IMUs provide 3-axis acceleration and angular velocity measurements, which can be used to perform **dead-reckoning**, i.e., position estimation sequentially integrating estimated velocities and accelerations.
Error Mitigation for Map-unaware INSs

PROBLEM:
- Outputs of low-cost IMUs’ accelerometers and gyroscopes are affected by several sources of errors (random noise, time-variant biases, etc). Such measurements are continuously integrated in an INS, so that even small errors quickly affect the estimate of the agent position.

SOLUTION:
- The INS was implemented in a real-time system using an Extended Kalman Filter (non-linear filtering technique).
- In our system model biases of the sensor are part of an hidden state and thus can be tracked together with the pedestrian position and dynamic state (orientation, velocity, acceleration, etc):

\[
\begin{align*}
x_k & \triangleq [p_k, v_k, a_k, q_k, a^b_k, \omega^b_k, \omega^b_k, b^a_k, b^\omega_k]^T,
\end{align*}
\]
Map-awareness Reduces Drifting

PROBLEM:
- Any INS based only on accelerometers/gyroscopes suffers from a slow drift between the true position and the INS-estimated one.

SOLUTION:
- Map-awareness may remove such a drift, thanks to the constraints that the map puts on the agent movements.

- Similarly to radio localization algorithms, map-awareness introduces strong **non-linearities** in the filtering algorithms, forcing a transition from semi-linear (EKF) to non-linear (e.g., PF) tracking algorithms.
A Novel Filtering Technique for Non-Linear Systems

PROBLEM:
- Traditional non-linear filtering techniques (PF, RBPF, UKF, etc) have a computational complexity which is **prohibitive** for large state vectors (in our case, dimensionality = 25)

APPROACH:
- Turbo-like filtering:

![Diagram of filtering techniques](image)
RESULTS:

- Turbo-like filtering has been employed to track a pedestrian equipped with a foot-mounted IMU.

- This resulted in a prototype of indoor localization system for pedestrians with sub-meter accuracy.
Results:

- The map-aware INS employing turbo-filtering is capable of **correcting the drift** that substantially affects a map-unaware INS.

- The computational complexity of the map-aware INS is roughly **1.5 times** the complexity of map-unaware INS.
Thanks for your attention.

Questions?
Publications

Journal Publications (published & submitted)

1. **Montorsi, F.; Vitetta, G. M.**; "On the Performance Limits of Pilot-Based Estimation of Bandlimited Frequency-Selective Communication Channels," *IEEE Transactions on Communications*, vol. 59, no. 11, Nov. 2011;

3. **Montorsi, F.; Mazuelas S.; Vitetta, G.; Win M. Z.**; "On the Performance Limits of Map-Aware Localization," Accepted for publication in *IEEE Transactions on Information Theory*

5. **Montorsi, F.; Pancaldi, F.; Vitetta, G.**; "Reduced-Complexity Algorithms for Indoor Map-Aware Localization Systems," Submitted to *IEEE Transactions on Wireless Communications*

Conference Publications (published)

2. **Montorsi, F.; Mazuelas S.; Vitetta, G.; Win M. Z.**; "On the Impact of A Priori Information on Localization Accuracy and Complexity," Accepted for publication in *IEEE International Conference on Communications 2013*

3. **Montorsi, F.; Pancaldi, F.; Vitetta, G.**; "Map-Aware RSS Localization Models and Algorithms Based on Experimental Data," Accepted for publication in *IEEE International Conference on Communications 2013*

4. **Montorsi, F.; Pancaldi, F.; Vitetta, G.**; "Design and Implementation of an Inertial Navigation System for Pedestrians Based on a Low-Cost MEMS IMU," Accepted for publication in *IEEE International Conference on Communications 2013 - Workshop on Advances in Network Localization and Navigation*