DeTAS: a Decentralized Traffic Aware Scheduling technique enabling IoT-compliant Multi-hop Low-power and Lossy Networks

Nicola Accettura1 Maria Rita Palattella2 Gennaro Boggia1 Luigi Alfredo Grieco1 Mischa Dohler3

1DEI, Politecnico di Bari (Italy) \\
2SnT, University of Luxembourg (Luxembourg) \\
3CTTC (Spain)

Riunione annuale GTTI 2013 \\
Ancona \\
24-26 June 2013
Communication stack for the Internet of Things

- Low Power Communication Stack
- Internet-Enabled Communication Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>CoAP</td>
</tr>
<tr>
<td>Transport</td>
<td>UDP</td>
</tr>
<tr>
<td>Network</td>
<td>IPv6, IETF RPL</td>
</tr>
<tr>
<td>adaptation</td>
<td>IETF 6LoWPAN</td>
</tr>
<tr>
<td>MAC</td>
<td>IEEE 802.15.4e</td>
</tr>
<tr>
<td>PHY</td>
<td>IEEE 802.15.4-2006</td>
</tr>
</tbody>
</table>

- IEEE 802.15.4e TSCH, minimizing idle listening and overhearing, and improving both reliability and energy efficiency
- IETF RPL, optimizing multihop paths in Low-power and Lossy Networks (LLNs)
Decentralized Traffic Aware Scheduling (DeTAS) algorithm

- Construction of optimum collision-free schedules for multi-hop RPL-enabled IEEE802.15.4e TSCH networks
- Distributed computation of such schedule
- Low amount of signaling messages exchanged among neighbor nodes
- Queue level management for traffic congestion avoidance
- Several transmissions at the same time
- Reduction of the network duty cycle
- Suitable for complex topologies