Flexible and Modular Support for Multicast Rate Adaptation in WLANs

Nicolo Facchi* and Pierluigi Gallo† and Francesco Gringoli* and Stefano Paris‡ and Ileneia Tinnirello† and Antonio Capone§

University of Brescia University of Palermo Paris Descartes University Politecnico di Milano
first.last@ing.unibs.it first.last@tti.unipa.it stefano.paris@parisdescartes.fr capone@elet.polimi.it

Abstract—The flexibility and virtualization capabilities provided by wireless cards have received significant attention as a means to reduce development costs. In this paper we present a modular architecture that exploits the features provided by emerging PHY and MAC implementations to rapidly develop new rate adaptation algorithms for multicast transmission in wireless LANs. We validate our solution by developing three rate adaptation algorithms that use an innovative sensing mechanism to evaluate the frame reception correlation of the members of the multicast group.

The experimental results obtained on a real-life testbed show that our solutions permit to increase the performance of multicast transmissions up to 3x and 5x in terms of throughput and delay with respect to the standard fixed rate approach, reducing losses at the same time.

Keywords—Multicast Rate Adaptation, Multimedia Communication, Wireless MAC Processor, Wireless LAN.

I. INTRODUCTION

The evolution of 802.11 technology [1] is making wireless networking extremely popular, thanks to general low cost and competitive performance. Even if packet delivery is not as reliable as in the wire, packet retransmission mechanisms together with rate adaptation mitigate signal propagation issues to such an extent that users accepted this access technology also for receiving multimedia contents, e.g., on smartphones, tablets and Internet enabled tv boxes. Although experience may be really pleasant when watching end to end streamed content, things change when multicast delivery is involved: as there are no feedbacks from receivers at the access layer, both rate adaptation and retransmissions have not been implemented and Access Points select the slower data rate for multicast transmissions. This kills applications that could potentially fit the broadcast nature of the radio channel.

Though IEEE is addressing the retransmission problem [2], in this paper we propose a rate adaptation technique that tunes the transmission rate of a multicast transmission dynamically without requiring any change or amendment to the access protocol. In general, rate adaptation needs two main blocks: the low-level feedback protocol, that collects frame delivery information from receivers; and the high-level rate adaptation algorithm that selects the best transmission rate according to such information. We resort on the flexibility provided by FLAVIA architecture [3] to implement the former; in particular, we introduce a feedback mechanism that collects delivery statistics for computing the reception correlation of wireless links of the multicast group. Then we present three algorithms that works on top of the feedback protocol and that address respectively the minimization of the delay and the frame losses and the maximization of the throughput and we compare them to the standard, fixed rate, approach.

The paper is structured as follows. Section II describes related work. Section III introduces the FLA VIA architecture and the protocol used to collect channel quality information. Section IV describes the rate adaption algorithms, and Section V illustrates experimental results obtained on a real-life testbed. Section VI concludes the paper.

II. RELATED WORK

The availability of flexible PHY supporting different transmission modes (single/multi antennas, short/long preambles, single/double bandwidth, etc.) is pushing the development of rate adaptation algorithms. The key issue to solve is the design of an effective feedback mechanism for assessing the channel quality towards each receiver and opportunistically select the PHY mode and the corresponding data rate as a tradeoff between modulation robustness and air–time. Multicast scenario increases complexity as the transmitter must handle multiple feedbacks simultaneously.

Current solutions consider both open-loop [4], [5] and closed-loop [6], [7], [8], [9] approaches based on different physical parameters, such as SNR, BER or FER, related to channel quality. Apart from the availability of the relevant PHY signals, in many cases these schemes require to change the frame formats (coding BER measures performed at the receiver side in the ACK frame [7]), the channel access operations (using RTS/CTS or basic access according to the frame loss events [5]) or the frame handshake sequences (using a variable CTS transmission rate as a parameter robust to collisions for coding the channel quality [6]). As no commercial card supports such customizations, most of these schemes have been only simulated or validated with simplified implementations over open-source drivers and SDR platforms.

III. RATE ADAPTATION FOR MULTICAST TRANSMISSIONS

In this section, we first describe the feedback protocol and then we illustrate its integration in the FLAVIA architecture.
A. Feedback Protocol

As shown in Figure 1, we divide air-time into two intervals to form a temporal super-frame composed of a Transmission period and a Polling period. The super-frame starts always with a transmission period that includes \(N \) data frames transmitted by the AP. The polling period concludes the super-frame and is coordinated by the AP for collecting feedbacks. Independently of the period, all nodes in the BSS adopt always a standard DCF access algorithm. During the transmission period of the \(e \)-th super-frame \(^1\) the AP transmits frame \(f_i \), \((e-1)N \leq i < eN\) at the optimal rate\(^2\) \(r^i = r_b \) if the sequence counter \(i \) satisfies the condition \(i \mod [\gamma N] \neq 0 \). For the remaining \([\gamma N] \) frames (called look around frames), whose number depends on the parameter \(\gamma \in (0,1) \), the AP selects a rate \(r^i = r_l \neq r_b \) according to the algorithm described in Section IV. Using this approach, the AP can continuously evaluate the channel quality experienced with data rates other than the optimal one.

During the polling period the AP coordinates the feedback protocol illustrated in Figure 2. Specifically, after transmitting a multicast poll frame, the AP waits the corresponding feedbacks from all stations. If some feedback is lost, the AP restarts the poll after a short timeout, for a maximum of \(n_a \) attempts. To trade off between accuracy and overhead, in the experiments, we fixed \(n_a = 7 \) and we set the timeout considering the propagation delays and the transmission time of polls and replies at the lowest bit-rate (i.e., \(r = 6 \text{Mb/s} \)).

![Fig. 1: Channel access inside the Super-frame: standard DCF is used.](image1)

![Fig. 2: Feedback protocol. In the example we assume the multicast group is composed of 3 STAs.](image2)

Figure 3 shows the feedback from station \(s \) during the \(e \)-th super-frame, made of i) the sequence number of the last received multicast frame \(s_s(e) \), and ii) an \(N \) bits bitmap \(b_s(e) \), whose \(n^{th} \) bit represents the reception (\(b_{s,n}(e) = 1 \)) or the loss (\(b_{s,n}(e) = 0 \)) of the frame identified by sequence number \((i = \lfloor \frac{s_s(e)}{N} \rfloor) \cdot N + n + 1 \) \(\in [(e-1)N+1,eN] \).

\(^1 \)We count super-frames starting from \(e = 1 \)

\(^2 \)In this paper, \(r^i \) refers to the rate used to transmit the frame whose sequence number is \(i \); instead, \(r_j \) refers to the transmission rate of index \(j \) (i.e., considering 802.11g, \(r_7 \) is 6Mbps and \(r_7 \) is 54Mbps).
frames at the selected rate \(r_b \) or \(r_l \) during the transmission period (TX state) and then it coordinates the polling period for collecting delivery information (FEEDBACK WAITING state) sent by receivers in response to a probe frame (TX POLL state).

IV. RATE ADAPTATION FOR MULTICAST TRANSMISSIONS

Hereafter, we describe the rate adaptation algorithm that runs on top of the WMP which executes the proposed feedback protocol.

At the end of a polling period the rate adaptation algorithm analyzes the feedbacks collected by the feedback protocol. Since stations send feedback frames after receiving the same frames, information collected during the polling period should report about the same set of transmitted data frames, unless some stations did not receive anything during the last transmission period. The algorithm can easily detect these stations, because their feedbacks include a sequence number \(s_s(e) \) lower than that of the first multicast frame transmitted in the transmission period \(e \): in this case the algorithm assumes these stations left the multicast group and discards their bitmaps.

At this point the algorithm computes the logical AND of the remaining bitmaps: the result represents the frames received jointly (bit set to 1) by all the stations.

To this end, for each rate the algorithm maintains the set of values described in Table I. Table II summarizes all the used parameters.

In the following we assume that the feedback protocol completed successfully and the AP received a feedback from every station in the multicast group. The algorithm updates the value of the joint reception probability \(P_{r_j} \) for every rate \(r_j \) such that \(np_{r_j} \geq \beta \) using the following rule:

\[
P_{r_j} \leftarrow (1 - \lambda)P_{r_j} + \lambda \left(np_{r_j} / np_{r_j} \right)
\]

In Eq. 1, \(\lambda \in (0, 1) \) is the EWMA (Exponentially Weighted Moving Average) weight and for every transmission rate \(r_j \) the corresponding \(P_{r_j} \) is initially set to 0.

For every rate \(r_j \), whose corresponding joint reception probability value \((P_{r_j}) \) has been recomputed after the execution of the feedback protocol, the algorithm recomputes the measure of successfullness \(S_{r_j} \) that is a function \(f(\cdot) \) of the joint reception probability \(P_{r_j} \). We considered two different cases for \(f(\cdot) \): in the first case \(S_{r_j} \) is given by \(P_{r_j} \) multiplied by the bit rate of the rate \(r_j \) and can be expressed as \(S_{r_j} = f(P_{r_j}) = P_{r_j} \cdot r_j \).

In this case the algorithm sets the transmission rate \(r_b(e+1) \) to be used in the next transmission period to the highest rate \(r_j \) whose measure of successfullness is maximum among all the available transmission rates:

\[
r_b(e+1) \leftarrow \max_{r_j} \left\{ r_j \mid S_{r_j} = \max_{r_k} S_{r_k} \right\}
\]

In the second case we set \(S_{r_j} = P_{r_j} \), and the algorithm chooses the highest rate \(r_j \) such that \(S_{r_j} \geq x \), where \(x \) is a fixed threshold value:

\[
r_b(e+1) \leftarrow \max_{r_j} \left\{ r_j \mid S_{r_j} \geq x, 0 < x < 1 \right\}
\]

Note that in the first case the algorithm maximizes the throughput, in the second case, instead, the algorithm limits the probability to lose a frames to \((1 - x)\).
TABLE I: Information maintained by the AP for each rate r_j

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>np_{r_j}</td>
<td>Number of multicast data frames transmitted with rate r_j since the last time P_{r_j} has been computed. This value is reset to 0 every time P_{r_j} is recomputed.</td>
</tr>
<tr>
<td>nj_{r_j}</td>
<td>Number of multicast data frames transmitted with rate r_j and jointly received by all STAs of the multicast group since P_{r_j} was recomputed. Reset to 0 every time P_{r_j} is recomputed.</td>
</tr>
<tr>
<td>ls_{r_j}</td>
<td>Sequence number of the last multicast data frame transmitted with rate r_j.</td>
</tr>
<tr>
<td>P_{r_j}</td>
<td>Joint reception probability of a multicast data frame transmitted with rate r_j. Recomputed every time $np_{r_j} \geq \beta$ (see Table II).</td>
</tr>
<tr>
<td>S_{r_j}</td>
<td>Measure of successfulness of a multicast frame transmitted with rate r_j, recomputed with P_{r_j}.</td>
</tr>
</tbody>
</table>

TABLE II: Parameters used by the proposed rate adaptation algorithm

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Percentage of look around frames in a super-frame, $\gamma \in (0, 1)$. Look around frames transmitted with suboptimal rate may be lost; for this reason γ should be low (default: 0.1).</td>
</tr>
<tr>
<td>β</td>
<td>Before P_{r_j} is recomputed, np_{r_j} must reach minimum $\beta \geq 1$. High values may lead to better estimation of the joint reception probability, reducing oscillations in the choice of the optimal rate. Nevertheless, high values can decrease the algorithm’s convergence time (default: 10).</td>
</tr>
<tr>
<td>α</td>
<td>Threshold value of term C_t in Eq. 5. It is used to assure every transmission rate r_j has a chance to be chosen to transmit the next look around frame (default: 0.05).</td>
</tr>
<tr>
<td>λ</td>
<td>EWMA parameter, $\lambda \in [0, 1]$: adapts convergence to new channel conditions (default: 0.7).</td>
</tr>
<tr>
<td>σ_3, σ_2, σ_1</td>
<td>Weights of term A_t, B_t, and C_t in Eq. 5 (default: 1, 0.2, 5).</td>
</tr>
<tr>
<td>N</td>
<td>Number of multicast frames in a super-frame (default: 128).</td>
</tr>
<tr>
<td>i</td>
<td>Multicast frame sequence number: starts with 1 and incremented after every transmission.</td>
</tr>
<tr>
<td>x</td>
<td>Loss threshold value. Used to limit frame loss probability to $(1 - x)$ (default: 0.04).</td>
</tr>
</tbody>
</table>

Regarding the look around frames, a rate $r_i \neq r_b$ is chosen with a probability $p_{r_i}^{la}$ that is influenced by the current joint reception probability (P_{r_i}), by the number of multicast frames that have been sent since the last multicast frames transmitted with that rate ($i - ls_{r_j}$) and by the total number of multicast frames transmitted with that rate since P_{r_j} has been recomputed (np_{r_j}). On the one hand, each rate r_i must have a positive probability $p_{r_i}^{la}$ to be chosen for the next look around frame (we want to continuously evaluate channel quality for all available rates); on the other hand, we do not want to transmit too many multicast frames with a rate that has shown bad performance to limit frames losses. Eq. 4 and 5 illustrates how the AP computes $p_{r_i}^{la}$:

$$p_{r_i}^{la} = \frac{w_{r_i}}{\sum_{k \neq i} w_{r_k}}$$ (4)

$$W_{r_i} = \sigma_1 A_t + \sigma_2 B_t + \sigma_3 C_t$$ (5)

where parameters σ_1, σ_2 and σ_3 in Eq.5 weigh A_t, B_t and C_t, respectively:

$$A_t = \begin{cases} \frac{\beta - np_{r_i}}{\beta} & \beta - np_{r_i} \geq 0 \\ 0 & \text{otherwise} \end{cases}$$ (6)

$$B_t = \frac{i - ls_{r_i}}{\max_{r_k}(i - ls_{r_k})}$$ (7)

$$C_t = \frac{P_{r_i} + \alpha}{\sum_{h \neq t} (P_{r_h} + \alpha)}$$ (8)

Term A_t states that the probability to choose rate r_i for the next look around frame must decrease when the total number of multicast frames transmitted at that rate since P_{r_i} has been computed is close or equal to β, where the latter is the minimum value that must be reached by np_{r_i} before P_{r_i} can be recomputed. Term B_t expresses the fact that the probability to choose rate r_i must be higher for rates that have not been tested for a long time. Term C_t states that the probability to choose rate r_i must be higher for rates that have shown good performance until now. Parameter α is used as a threshold value so that all rates have $C_t > 0$.

V. NUMERICAL RESULTS

This section illustrates the experimental results achieved by the proposed multicast rate adaptation algorithm. We compare the following four algorithms:

1) **Best throughput**: this algorithm tries to maximize the throughput; the rate for the next super-frame is determined by Eq. 2;

2) **Limited losses**: this algorithm tries to limit losses; the rate for the next super-frame is determined by Eq. 3;

3) **Fixed rate**: this algorithm is used by most of the commercial wifi cards; all multicast frames are transmitted at the lowest rate, 6Mb/s for IEEE 802.11g;

4) **Linear increase/Multiplicative decrease**: this algorithm, proposed in [10], uses the same super-frame format and the same feedback protocol described in Section III-A: the rate for the next super-frame is chosen comparing the expected transmission times of two previous trans-

This is the only one of the four tested algorithms that doesn’t work on top of the WMP.
mission periods according to the following rule:

\[
j = \text{index}_{\text{of}}(R, r_b(e)), \quad (9)
\]

\[
r_b(e + 1) = \begin{cases} R[j + 1] & \frac{T(e)}{T(e-1)} \leq 1 \\ R[j - 2] & \frac{T(e)}{T(e-1)} > 1. \end{cases} \quad (10)
\]

where \(R \) represents the list of available transmission rates, and Eq. 9 returns the index of rate \(r_b(e) \) within \(R \). Assuming the same size \(L \) for all multicast frames, the expected transmission time of a frame is \(T(e) = L / P(e) r_b(e) \), where \(P(e) \) is joint reception probability computed considering only the \(N \) multicast frames transmitted during the transmission period \(e \) (EWMA is not performed).

A. Experimental Methodology

To compare the proposed mechanisms, we used the testbed showed in Figure 5, located inside the Department of Information Engineering at the University of Brescia. We positioned the AP (black circle) inside the LAB together with nine fixed stations (black squares) lying from 2 to 8 meters away the AP. We used a battery-powered Alx 2D2 as mobile node. All nodes are equipped with Broadcom 4318 wireless NICs (802.11g compliant) and run the WMP. We tested separately each of the four considered systems with the mobile station located in 18 different positions, ranging from a 3m minimum distance (P1) to a 55m maximum distance (P11) with respect to the AP. However, we point out that the delivery probability is not strictly correlated to the distance of the mobile node from the AP; instead, it’s the massive presence of floor-to-ceiling walls, solid steel glass doors and other types of obstacles that makes some positions more adverse than others to the propagation of the signal. In each test, that we repeated five times, the AP greedily transmitted 100000 multicast frames: we ended up with 18(positions) \times 4(systems) \times 5(repetitions). We fixed packet payload to 1470 bytes similarly to many video streaming applications based on the Real Time Protocol (RTP).

We set the parameters used by the proposed algorithms to the default values indicated in Table II: their choice came from preliminary experimental observations that followed a quick analysis on the influence of each parameter on algorithms’ behavior.

B. Network Performance Analysis

We consider as performance metrics the average goodput, namely the average bandwidth actually used for successful transmission of useful application layer data, the average delay and the average losses measured by the ten STAs.

Figure 6a shows the average goodput, measured by the ten STAs, as a function of the mobile node position: the best throughput version of the proposed algorithm outperforms the others in all experimental scenarios. In particular, we get a performance increase ranging from 102% to 250% with respect to the standard fixed rate solution, from 15% to 33% with respect to the linear-increase/multiplicative-decrease one, and from 15% to 97% if compared with the limited losses version of the algorithm. Though the latter performs slightly worse than the linear-increase/multiplicative-decrease, we will see shortly that it provides better performance in terms of losses.

Figure 6b shows the average one-way transmission delay. Results are specular wrt the goodput: the standard fixed rate solution exhibits always higher delays than the linear-increase/multiplicative-decrease and the limited losses solutions; whereas the best throughput algorithm achieves the lowest delay. Quantitatively the last three algorithms reduce the one-way delay up to 5 times with respect to the fixed rate solution.

Finally, frame losses are illustrated in Figure 7. Dashed lines represent the average losses experienced by all the stations, whereas crosses correspond to the losses of the single mobile node. Even though the linear-increase/multiplicative-decrease algorithm provides good performance in terms of goodput and delay, the high number of frame losses may affect the Quality of Service of multimedia streams.

The limited losses algorithm well approaches the performance achieved by the fixed rate scheme, which represents the best solution. It can be further observed that the best throughput mechanism causes a slightly higher number of frame losses than the limited losses. Indeed, when the mobile node is in a critical position the limited losses algorithm sacrifices the goodput to maintain losses under 4% for all the STAs; whereas the best throughput version selects greedily the transmission rate that maximizes the throughput, thus leading the mobile node to lose up to 10% of the transmitted frames.

VI. CONCLUSION

We proposed in this paper an innovative feedback protocol to estimate the reception probability correlation of the wireless links connecting an AP to a group of STAs. We implemented the protocol on the Wireless MAC Processor (WMP) architecture in order to fully exploit the flexibility provided by current wireless cards and provide a set of standard functionalities to rapidly develop new rate adaptation schemes.

On top of the protocol we developed three algorithms to select adaptively the transmission rate of multicast data frames and we tested them on a real-life testbed to validate our modular implementation.

Specifically, our solutions increase the overall performance in terms of throughput and transmission delay, with losses approaching the same values achieved by the fixed rate scheme; thus representing a viable solution to increase the number of multicast multimedia streams that can be transmitted using the 802.11 technology.

ACKNOWLEDGMENT

This work was supported by the European Commission through the FP7 FLAVIA Project.

REFERENCES

Fig. 5: Testbed with one AP, nine fixed STAs and one mobile node.

Fig. 6: Average goodput and delay as a function of the mobile node’s position.

Fig. 7: Average losses as a function of the mobile nodes’ position.

